微系统
能量收集
压电
材料科学
软机器人
非线性系统
电压
纳米技术
电活性聚合物
聚合物
执行机构
机械工程
能量(信号处理)
计算机科学
电气工程
工程类
复合材料
人工智能
物理
量子力学
作者
Mengdi Han,Heling Wang,Yiyuan Yang,Cunman Liang,Wubin Bai,Zheng Yan,Haibo Li,Yeguang Xue,Ao Wang,Banu Akar,Hangbo Zhao,Haiwen Luan,Jaeman Lim,Irawati Kandela,Guillermo A. Ameer,Yihui Zhang,Yonggang Huang,John A. Rogers
标识
DOI:10.1038/s41928-018-0189-7
摘要
Piezoelectric microsystems are of use in areas such as mechanical sensing, energy conversion and robotics. The systems typically have a planar structure, but transforming them into complex three-dimensional (3D) frameworks could enhance and extend their various modes of operation. Here, we report a controlled, nonlinear buckling process to convert lithographically defined two-dimensional patterns of electrodes and thin films of piezoelectric polymers into sophisticated 3D piezoelectric microsystems. To illustrate the engineering versatility of the approach, we create more than twenty different 3D geometries. With these structures, we then demonstrate applications in energy harvesting with tailored mechanical properties and root-mean-square voltages ranging from 2 mV to 790 mV, in multifunctional sensors for robotic prosthetic interfaces with improved responsivity (for example, anisotropic responses and sensitivity of 60 mV N−1 for normal force), and in bio-integrated devices with in vivo operational capabilities. The 3D geometries, especially those with ultralow stiffnesses or asymmetric layouts, yield unique mechanical attributes and levels of functionality that would be difficult or impossible to achieve with conventional two-dimensional designs. Nonlinear buckling processes can be used to transform thin films of piezoelectric polymers into sophisticated 3D piezoelectric microsystems with applications in energy harvesting, multifunctional sensing and bio-integrated devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI