Quantitative vessel tortuosity: A potential CT imaging biomarker for distinguishing lung granulomas from adenocarcinomas

医学 成像生物标志物 放射科 生物标志物 接收机工作特性 正电子发射断层摄影术 断层摄影术 卷积神经网络 核医学 磁共振成像 人工智能 计算机科学 内科学 生物化学 化学
作者
Mohammadhadi Khorrami,Mahdi Orooji,Niha Beig,Prateek Prasanna,Prabhakar Rajiah,Christopher Donatelli,Vamsidhar Velcheti,Sagar Rakshit,Michael Yang,Frank J. Jacono,Robert Gilkeson,Philip A. Linden,Anant Madabhushi
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:8 (1) 被引量:29
标识
DOI:10.1038/s41598-018-33473-0
摘要

Adenocarcinomas and active granulomas can both have a spiculated appearance on computed tomography (CT) and both are often fluorodeoxyglucose (FDG) avid on positron emission tomography (PET) scan, making them difficult to distinguish. Consequently, patients with benign granulomas are often subjected to invasive surgical biopsies or resections. In this study, quantitative vessel tortuosity (QVT), a novel CT imaging biomarker to distinguish between benign granulomas and adenocarcinomas on routine non-contrast lung CT scans is introduced. Our study comprised of CT scans of 290 patients from two different institutions, one cohort for training (N = 145) and the other (N = 145) for independent validation. In conjunction with a machine learning classifier, the top informative and stable QVT features yielded an area under receiver operating characteristic curve (ROC AUC) of 0.85 in the independent validation set. On the same cohort, the corresponding AUCs for two human experts including a radiologist and a pulmonologist were found to be 0.61 and 0.60, respectively. QVT features also outperformed well known shape and textural radiomic features which had a maximum AUC of 0.73 (p-value = 0.002), as well as features learned using a convolutional neural network AUC = 0.76 (p-value = 0.028). Our results suggest that QVT features could potentially serve as a non-invasive imaging biomarker to distinguish granulomas from adenocarcinomas on non-contrast CT scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
焦星星发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
奶油泡fu完成签到 ,获得积分10
3秒前
深情安青应助忧郁的向雁采纳,获得10
3秒前
研友Zby14n发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
charming完成签到 ,获得积分10
6秒前
叮当发布了新的文献求助10
6秒前
Crane发布了新的文献求助10
7秒前
齐乾宁完成签到,获得积分10
7秒前
7秒前
风筝鱼完成签到 ,获得积分10
7秒前
科研通AI5应助虚心的访烟采纳,获得30
7秒前
wanci应助Sandstorm采纳,获得10
7秒前
8秒前
李健应助菜菜采纳,获得10
9秒前
葛立峰发布了新的文献求助10
10秒前
freshabc完成签到,获得积分10
10秒前
99668完成签到,获得积分10
10秒前
852应助乐观的海采纳,获得10
10秒前
科研通AI6应助Deyong采纳,获得10
10秒前
Jun完成签到 ,获得积分10
10秒前
12秒前
Crane完成签到,获得积分10
12秒前
yoona发布了新的文献求助10
13秒前
彭于晏应助科研通管家采纳,获得10
14秒前
Rita应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908652
求助须知:如何正确求助?哪些是违规求助? 4185172
关于积分的说明 12997027
捐赠科研通 3951974
什么是DOI,文献DOI怎么找? 2167233
邀请新用户注册赠送积分活动 1185712
关于科研通互助平台的介绍 1092321