Coevolutionary Particle Swarm Optimization With Bottleneck Objective Learning Strategy for Many-Objective Optimization

瓶颈 数学优化 粒子群优化 计算机科学 进化算法 元启发式 人口 趋同(经济学) 多目标优化 进化计算 多群优化 最优化问题 人工智能 数学 嵌入式系统
作者
Xiaofang Liu,Zhi-Hui Zhan,Ying Gao,Jie Zhang,Sam Kwong,Jun Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 587-602 被引量:150
标识
DOI:10.1109/tevc.2018.2875430
摘要

The application of multiobjective evolutionary algorithms to many-objective optimization problems often faces challenges in terms of diversity and convergence. On the one hand, with a limited population size, it is difficult for an algorithm to cover different parts of the whole Pareto front (PF) in a large objective space. The algorithm tends to concentrate only on limited areas. On the other hand, as the number of objectives increases, solutions easily have poor values on some objectives, which can be regarded as poor bottleneck objectives that restrict solutions’ convergence to the PF. Thus, we propose a coevolutionary particle swarm optimization with a bottleneck objective learning (BOL) strategy for many-objective optimization. In the proposed algorithm, multiple swarms coevolve in distributed fashion to maintain diversity for approximating different parts of the whole PF, and a novel BOL strategy is developed to improve convergence on all objectives. In addition, we develop a solution reproduction procedure with both an elitist learning strategy (ELS) and a juncture learning strategy (JLS) to improve the quality of archived solutions. The ELS helps the algorithm to jump out of local PFs, and the JLS helps to reach out to the missing areas of the PF that are easily missed by the swarms. The performance of the proposed algorithm is evaluated using two widely used test suites with different numbers of objectives. Experimental results show that the proposed algorithm compares favorably with six other state-of-the-art algorithms on many-objective optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
管理想完成签到,获得积分10
2秒前
Lyric_完成签到,获得积分10
2秒前
向日葵发布了新的文献求助30
2秒前
张欣宇完成签到,获得积分10
2秒前
Jay发布了新的文献求助10
3秒前
有机合成发布了新的文献求助10
4秒前
123发布了新的文献求助10
5秒前
Aaronzxy发布了新的文献求助10
5秒前
5秒前
儒雅惜海发布了新的文献求助10
6秒前
Changlin发布了新的文献求助10
6秒前
7秒前
MAIDANG完成签到,获得积分10
7秒前
anran完成签到 ,获得积分10
8秒前
顾子墨完成签到,获得积分10
8秒前
思源应助小马哥采纳,获得10
8秒前
白白熊完成签到 ,获得积分10
9秒前
在水一方应助无私的易蓉采纳,获得10
9秒前
情怀应助VDC采纳,获得10
9秒前
科研通AI2S应助会飞的野马采纳,获得10
9秒前
我爱读文献完成签到,获得积分10
10秒前
10秒前
nihao完成签到,获得积分10
10秒前
半只橙发布了新的文献求助10
10秒前
10秒前
lyt发布了新的文献求助10
11秒前
11秒前
华北走地鸡完成签到,获得积分10
11秒前
薄荷味的soda完成签到,获得积分10
12秒前
傻傻的芷巧完成签到,获得积分10
12秒前
Airi完成签到,获得积分10
12秒前
甜甜的不二完成签到,获得积分10
12秒前
12秒前
严永桂发布了新的文献求助10
12秒前
潜放完成签到,获得积分10
13秒前
FashionBoy应助爱笑鸡翅采纳,获得10
13秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159243
求助须知:如何正确求助?哪些是违规求助? 2810372
关于积分的说明 7887509
捐赠科研通 2469200
什么是DOI,文献DOI怎么找? 1314702
科研通“疑难数据库(出版商)”最低求助积分说明 630697
版权声明 602012