清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Novel Nomogram to Identify Candidates for Extended Pelvic Lymph Node Dissection Among Patients with Clinically Localized Prostate Cancer Diagnosed with Magnetic Resonance Imaging-targeted and Systematic Biopsies

列线图 医学 前列腺癌 磁共振成像 淋巴结 放射科 前列腺切除术 活检 阶段(地层学) 接收机工作特性 癌症 解剖(医学) 泌尿科 肿瘤科 内科学 古生物学 生物
作者
Giorgio Gandaglia,Guillaume Ploussard,Massimo Valério,Agostino Mattei,Cristian Fiori,Nicola Fossati,Armando Stabile,Jean‐Baptiste Beauval,Bernard Malavaud,M. Roumiguié,Daniele Robesti,Paolo Dell’Oglio,Marco Moschini,Stefania Zamboni,Arnas Rakauskas,Francesco De Cobelli,Francesco Porpiglia,Francesco Montorsi,Alberto Briganti
出处
期刊:European Urology [Elsevier]
卷期号:75 (3): 506-514 被引量:252
标识
DOI:10.1016/j.eururo.2018.10.012
摘要

Available models for predicting lymph node invasion (LNI) in prostate cancer (PCa) patients undergoing radical prostatectomy (RP) might not be applicable to men diagnosed via magnetic resonance imaging (MRI)-targeted biopsies. To assess the accuracy of available tools to predict LNI and to develop a novel model for men diagnosed via MRI-targeted biopsies. A total of 497 patients diagnosed via MRI-targeted biopsies and treated with RP and extended pelvic lymph node dissection (ePLND) at five institutions were retrospectively identified. Three available models predicting LNI were evaluated using the area under the receiver operating characteristic curve (AUC), calibration plots, and decision curve analyses. A nomogram predicting LNI was developed and internally validated. Overall, 62 patients (12.5%) had LNI. The median number of nodes removed was 15. The AUC for the Briganti 2012, Briganti 2017, and MSKCC nomograms was 82%, 82%, and 81%, respectively, and their calibration characteristics were suboptimal. A model including PSA, clinical stage and maximum diameter of the index lesion on multiparametric MRI (mpMRI), grade group on targeted biopsy, and the presence of clinically significant PCa on concomitant systematic biopsy had an AUC of 86% and represented the basis for a coefficient-based nomogram. This tool exhibited a higher AUC and higher net benefit compared to available models developed using standard biopsies. Using a cutoff of 7%, 244 ePLNDs (57%) would be spared and a lower number of LNIs would be missed compared to available nomograms (1.6% vs 4.6% vs 4.5% vs 4.2% for the new nomogram vs Briganti 2012 vs Briganti 2017 vs MSKCC). Available models predicting LNI are characterized by suboptimal accuracy and clinical net benefit for patients diagnosed via MRI-targeted biopsies. A novel nomogram including mpMRI and MRI-targeted biopsy data should be used to identify candidates for ePLND in this setting. We developed the first nomogram to predict lymph node invasion (LNI) in prostate cancer patients diagnosed via magnetic resonance imaging-targeted biopsy undergoing radical prostatectomy. Adoption of this model to identify candidates for extended pelvic lymph node dissection could avoid up to 60% of these procedures at the cost of missing only 1.6% patients with LNI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
阿巴阿巴发布了新的文献求助10
24秒前
ding应助阿巴阿巴采纳,获得10
29秒前
yw完成签到,获得积分10
38秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
Tiger完成签到,获得积分10
1分钟前
1分钟前
1分钟前
阿巴阿巴发布了新的文献求助10
1分钟前
Hello应助阿巴阿巴采纳,获得10
1分钟前
Artin完成签到,获得积分10
1分钟前
1分钟前
Emperor完成签到 ,获得积分0
1分钟前
2分钟前
阿巴阿巴发布了新的文献求助10
2分钟前
聂裕铭完成签到 ,获得积分10
2分钟前
烟花应助阿巴阿巴采纳,获得10
2分钟前
研友_nxw2xL完成签到,获得积分10
2分钟前
2分钟前
muriel完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
小二郎应助A_Brute采纳,获得10
3分钟前
3分钟前
阿巴阿巴发布了新的文献求助10
3分钟前
yar应助阿巴阿巴采纳,获得10
3分钟前
Hello应助阿巴阿巴采纳,获得10
3分钟前
852应助阿巴阿巴采纳,获得10
3分钟前
领导范儿应助阿巴阿巴采纳,获得10
3分钟前
深情安青应助阿巴阿巴采纳,获得10
3分钟前
3分钟前
Orange应助阿巴阿巴采纳,获得10
3分钟前
李健应助阿巴阿巴采纳,获得10
3分钟前
打打应助阿巴阿巴采纳,获得10
3分钟前
传奇3应助阿巴阿巴采纳,获得10
3分钟前
搜集达人应助阿巴阿巴采纳,获得10
3分钟前
汉堡包应助阿巴阿巴采纳,获得10
3分钟前
传奇3应助阿巴阿巴采纳,获得10
3分钟前
wanci应助阿巴阿巴采纳,获得10
3分钟前
丘比特应助阿巴阿巴采纳,获得10
3分钟前
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059644
关于积分的说明 9067342
捐赠科研通 2750142
什么是DOI,文献DOI怎么找? 1509065
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696913