Predicting persistent depressive symptoms in older adults: A machine learning approach to personalised mental healthcare

逻辑回归 机器学习 社会心理的 病人健康调查表 人工智能 萧条(经济学) 预测能力 医学 抑郁症状 精神科 计算机科学 焦虑 经济 宏观经济学 哲学 认识论
作者
Christopher M. Hatton,Lewis W. Paton,Dean McMillan,James Cussens,Simon Gilbody,Paul A. Tiffin
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:246: 857-860 被引量:68
标识
DOI:10.1016/j.jad.2018.12.095
摘要

Depression causes significant physical and psychosocial morbidity. Predicting persistence of depressive symptoms could permit targeted prevention, and lessen the burden of depression. Machine learning is a rapidly expanding field, and such approaches offer powerful predictive abilities. We investigated the utility of a machine learning approach to predict the persistence of depressive symptoms in older adults.Baseline demographic and psychometric data from 284 patients were used to predict the likelihood of older adults having persistent depressive symptoms after 12 months, using a machine learning approach ('extreme gradient boosting'). Predictive performance was compared to a conventional statistical approach (logistic regression). Data were drawn from the 'treatment-as-usual' arm of the CASPER (CollAborative care and active surveillance for Screen-Positive EldeRs with subthreshold depression) trial.Predictive performance was superior using machine learning compared to logistic regression (mean AUC 0.72 vs. 0.67, p < 0.0001). Using machine learning, an average of 89% of those predicted to have PHQ-9 scores above threshold at 12 months actually did, compared to 78% using logistic regression. However, mean negative predictive values were somewhat lower for the machine learning approach (45% vs. 35%).A relatively small sample size potentially limited the predictive power of the algorithm. In addition, PHQ-9 scores were used as an indicator of persistent depressive symptoms, and whilst well validated, a clinical interview would have been preferable.Overall, our findings support the potential application of machine learning in personalised mental healthcare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小小康康完成签到,获得积分10
刚刚
sgr发布了新的文献求助10
刚刚
李爱国应助天天开心采纳,获得10
1秒前
咕咕完成签到 ,获得积分10
1秒前
永远完成签到,获得积分10
2秒前
体贴楼房完成签到,获得积分20
2秒前
yyy发布了新的文献求助20
3秒前
哥斯拉完成签到 ,获得积分10
3秒前
李健的小迷弟应助金金睿采纳,获得10
4秒前
lhxing发布了新的文献求助10
4秒前
金戈完成签到,获得积分10
5秒前
5秒前
慕青应助苗条的一一采纳,获得10
5秒前
六月完成签到,获得积分10
6秒前
zhanghan完成签到,获得积分10
6秒前
6秒前
Ava应助麦兜采纳,获得10
7秒前
清栀完成签到,获得积分10
7秒前
7秒前
8秒前
赘婿应助lkk采纳,获得10
8秒前
某不科学的萌萌完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
hf发布了新的文献求助10
11秒前
12秒前
昭明完成签到,获得积分10
12秒前
Yangjin完成签到,获得积分20
12秒前
12秒前
善学以致用应助lzj采纳,获得10
12秒前
13秒前
longuy完成签到,获得积分10
13秒前
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620548
求助须知:如何正确求助?哪些是违规求助? 4705184
关于积分的说明 14930630
捐赠科研通 4762246
什么是DOI,文献DOI怎么找? 2551059
邀请新用户注册赠送积分活动 1513711
关于科研通互助平台的介绍 1474633