Predicting persistent depressive symptoms in older adults: A machine learning approach to personalised mental healthcare

逻辑回归 机器学习 社会心理的 病人健康调查表 人工智能 萧条(经济学) 预测能力 医学 抑郁症状 精神科 计算机科学 焦虑 经济 宏观经济学 哲学 认识论
作者
Christopher M. Hatton,Lewis W. Paton,Dean McMillan,James Cussens,Simon Gilbody,Paul A. Tiffin
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:246: 857-860 被引量:68
标识
DOI:10.1016/j.jad.2018.12.095
摘要

Depression causes significant physical and psychosocial morbidity. Predicting persistence of depressive symptoms could permit targeted prevention, and lessen the burden of depression. Machine learning is a rapidly expanding field, and such approaches offer powerful predictive abilities. We investigated the utility of a machine learning approach to predict the persistence of depressive symptoms in older adults.Baseline demographic and psychometric data from 284 patients were used to predict the likelihood of older adults having persistent depressive symptoms after 12 months, using a machine learning approach ('extreme gradient boosting'). Predictive performance was compared to a conventional statistical approach (logistic regression). Data were drawn from the 'treatment-as-usual' arm of the CASPER (CollAborative care and active surveillance for Screen-Positive EldeRs with subthreshold depression) trial.Predictive performance was superior using machine learning compared to logistic regression (mean AUC 0.72 vs. 0.67, p < 0.0001). Using machine learning, an average of 89% of those predicted to have PHQ-9 scores above threshold at 12 months actually did, compared to 78% using logistic regression. However, mean negative predictive values were somewhat lower for the machine learning approach (45% vs. 35%).A relatively small sample size potentially limited the predictive power of the algorithm. In addition, PHQ-9 scores were used as an indicator of persistent depressive symptoms, and whilst well validated, a clinical interview would have been preferable.Overall, our findings support the potential application of machine learning in personalised mental healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助莫言采纳,获得10
1秒前
华仔应助超帅蛋挞采纳,获得10
1秒前
Rainbow完成签到,获得积分20
3秒前
浮生如梦完成签到,获得积分10
3秒前
bigben446发布了新的文献求助10
4秒前
陈早睡完成签到,获得积分10
4秒前
852应助mjn404采纳,获得10
4秒前
oceandad完成签到,获得积分10
4秒前
5秒前
晓旭完成签到 ,获得积分10
5秒前
研友_VZG7GZ应助koh采纳,获得30
7秒前
科研通AI2S应助99668采纳,获得10
10秒前
12秒前
听话的晓夏完成签到,获得积分10
13秒前
研友_VZG7GZ应助酷酷的乐菱采纳,获得10
14秒前
lll完成签到,获得积分10
14秒前
研友_8oYPrn完成签到,获得积分10
15秒前
mjn404完成签到,获得积分20
15秒前
15秒前
丹dan完成签到,获得积分10
16秒前
danniers完成签到,获得积分10
16秒前
CodeCraft应助探险家蝈蝈采纳,获得30
17秒前
mjn404发布了新的文献求助10
18秒前
lll发布了新的文献求助10
18秒前
19秒前
CipherSage应助欻欻采纳,获得10
19秒前
刺猬完成签到,获得积分10
19秒前
上好佳发布了新的文献求助20
19秒前
JamesPei应助阿花阿花采纳,获得10
19秒前
li发布了新的文献求助10
20秒前
21秒前
21秒前
lingod发布了新的文献求助30
21秒前
21秒前
三寒鸦发布了新的文献求助10
22秒前
SuMX完成签到 ,获得积分10
24秒前
vlots给uu的求助进行了留言
25秒前
柳听白发布了新的文献求助10
25秒前
koh完成签到,获得积分10
25秒前
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151919
求助须知:如何正确求助?哪些是违规求助? 2803228
关于积分的说明 7852576
捐赠科研通 2460608
什么是DOI,文献DOI怎么找? 1309955
科研通“疑难数据库(出版商)”最低求助积分说明 629070
版权声明 601760