清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting persistent depressive symptoms in older adults: A machine learning approach to personalised mental healthcare

逻辑回归 机器学习 社会心理的 病人健康调查表 人工智能 萧条(经济学) 预测能力 医学 抑郁症状 精神科 计算机科学 焦虑 经济 宏观经济学 哲学 认识论
作者
Christopher M. Hatton,Lewis W. Paton,Dean McMillan,James Cussens,Simon Gilbody,Paul A. Tiffin
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:246: 857-860 被引量:68
标识
DOI:10.1016/j.jad.2018.12.095
摘要

Depression causes significant physical and psychosocial morbidity. Predicting persistence of depressive symptoms could permit targeted prevention, and lessen the burden of depression. Machine learning is a rapidly expanding field, and such approaches offer powerful predictive abilities. We investigated the utility of a machine learning approach to predict the persistence of depressive symptoms in older adults.Baseline demographic and psychometric data from 284 patients were used to predict the likelihood of older adults having persistent depressive symptoms after 12 months, using a machine learning approach ('extreme gradient boosting'). Predictive performance was compared to a conventional statistical approach (logistic regression). Data were drawn from the 'treatment-as-usual' arm of the CASPER (CollAborative care and active surveillance for Screen-Positive EldeRs with subthreshold depression) trial.Predictive performance was superior using machine learning compared to logistic regression (mean AUC 0.72 vs. 0.67, p < 0.0001). Using machine learning, an average of 89% of those predicted to have PHQ-9 scores above threshold at 12 months actually did, compared to 78% using logistic regression. However, mean negative predictive values were somewhat lower for the machine learning approach (45% vs. 35%).A relatively small sample size potentially limited the predictive power of the algorithm. In addition, PHQ-9 scores were used as an indicator of persistent depressive symptoms, and whilst well validated, a clinical interview would have been preferable.Overall, our findings support the potential application of machine learning in personalised mental healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俊逸的盛男完成签到 ,获得积分10
7秒前
吴静完成签到 ,获得积分10
39秒前
灯光师完成签到,获得积分10
47秒前
widesky777完成签到 ,获得积分0
48秒前
大雁完成签到 ,获得积分10
48秒前
科研通AI5应助灯光师采纳,获得10
55秒前
zyjsunye完成签到 ,获得积分10
1分钟前
1分钟前
加油发布了新的文献求助10
1分钟前
大胆面包完成签到 ,获得积分10
1分钟前
完美世界应助加油采纳,获得10
1分钟前
1分钟前
Yoanna应助科研通管家采纳,获得30
1分钟前
1分钟前
闹心发布了新的文献求助10
1分钟前
彭晓雅发布了新的文献求助80
1分钟前
一个小胖子完成签到,获得积分10
2分钟前
Akim应助一个小胖子采纳,获得10
2分钟前
斯文败类应助LeezZZZ采纳,获得10
2分钟前
zijingsy完成签到 ,获得积分10
2分钟前
cgs完成签到 ,获得积分10
2分钟前
2分钟前
西安浴日光能赵炜完成签到,获得积分10
2分钟前
李铃锐完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
鹏哥爱科研完成签到,获得积分20
3分钟前
灯光师发布了新的文献求助10
3分钟前
roger完成签到 ,获得积分10
3分钟前
王波完成签到 ,获得积分10
3分钟前
3分钟前
晚风发布了新的文献求助10
3分钟前
Yoanna应助科研通管家采纳,获得30
3分钟前
Yoanna应助科研通管家采纳,获得30
3分钟前
万能图书馆应助晚风采纳,获得10
3分钟前
Jayzie完成签到 ,获得积分10
3分钟前
赵李锋完成签到,获得积分10
3分钟前
六一儿童节完成签到 ,获得积分0
4分钟前
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5149474
求助须知:如何正确求助?哪些是违规求助? 4345460
关于积分的说明 13530498
捐赠科研通 4187811
什么是DOI,文献DOI怎么找? 2296482
邀请新用户注册赠送积分活动 1296860
关于科研通互助平台的介绍 1241187