亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting persistent depressive symptoms in older adults: A machine learning approach to personalised mental healthcare

逻辑回归 机器学习 社会心理的 病人健康调查表 人工智能 萧条(经济学) 预测能力 医学 抑郁症状 精神科 计算机科学 焦虑 经济 宏观经济学 哲学 认识论
作者
Christopher M. Hatton,Lewis W. Paton,Dean McMillan,James Cussens,Simon Gilbody,Paul A. Tiffin
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:246: 857-860 被引量:68
标识
DOI:10.1016/j.jad.2018.12.095
摘要

Depression causes significant physical and psychosocial morbidity. Predicting persistence of depressive symptoms could permit targeted prevention, and lessen the burden of depression. Machine learning is a rapidly expanding field, and such approaches offer powerful predictive abilities. We investigated the utility of a machine learning approach to predict the persistence of depressive symptoms in older adults.Baseline demographic and psychometric data from 284 patients were used to predict the likelihood of older adults having persistent depressive symptoms after 12 months, using a machine learning approach ('extreme gradient boosting'). Predictive performance was compared to a conventional statistical approach (logistic regression). Data were drawn from the 'treatment-as-usual' arm of the CASPER (CollAborative care and active surveillance for Screen-Positive EldeRs with subthreshold depression) trial.Predictive performance was superior using machine learning compared to logistic regression (mean AUC 0.72 vs. 0.67, p < 0.0001). Using machine learning, an average of 89% of those predicted to have PHQ-9 scores above threshold at 12 months actually did, compared to 78% using logistic regression. However, mean negative predictive values were somewhat lower for the machine learning approach (45% vs. 35%).A relatively small sample size potentially limited the predictive power of the algorithm. In addition, PHQ-9 scores were used as an indicator of persistent depressive symptoms, and whilst well validated, a clinical interview would have been preferable.Overall, our findings support the potential application of machine learning in personalised mental healthcare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
23秒前
27秒前
Omni完成签到,获得积分10
28秒前
美满尔蓝完成签到,获得积分10
34秒前
39秒前
46秒前
栗子完成签到,获得积分10
1分钟前
1分钟前
123完成签到 ,获得积分10
1分钟前
感动的飞莲完成签到 ,获得积分10
1分钟前
Kishi完成签到,获得积分10
1分钟前
1分钟前
Hello应助Ahan采纳,获得10
1分钟前
1分钟前
顾矜应助spisn采纳,获得10
1分钟前
Ahan发布了新的文献求助10
1分钟前
Ahan完成签到,获得积分10
1分钟前
1分钟前
spisn完成签到,获得积分10
1分钟前
spisn发布了新的文献求助10
1分钟前
华仔应助科研通管家采纳,获得10
2分钟前
2分钟前
稗子酿的酒完成签到 ,获得积分10
2分钟前
从容芮完成签到,获得积分0
2分钟前
2分钟前
2分钟前
2分钟前
朱志伟发布了新的文献求助30
2分钟前
3分钟前
3分钟前
19950220完成签到,获得积分10
3分钟前
朱志伟完成签到,获得积分10
3分钟前
3分钟前
3分钟前
睡不醒的xx完成签到 ,获得积分10
3分钟前
3分钟前
西江月大团子完成签到,获得积分10
3分钟前
飞天大南瓜完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606566
求助须知:如何正确求助?哪些是违规求助? 4691031
关于积分的说明 14866783
捐赠科研通 4707425
什么是DOI,文献DOI怎么找? 2542899
邀请新用户注册赠送积分活动 1508211
关于科研通互助平台的介绍 1472276