Predicting persistent depressive symptoms in older adults: A machine learning approach to personalised mental healthcare

逻辑回归 机器学习 社会心理的 病人健康调查表 人工智能 萧条(经济学) 预测能力 医学 抑郁症状 精神科 计算机科学 焦虑 经济 宏观经济学 哲学 认识论
作者
Christopher M. Hatton,Lewis W. Paton,Dean McMillan,James Cussens,Simon Gilbody,Paul A. Tiffin
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:246: 857-860 被引量:68
标识
DOI:10.1016/j.jad.2018.12.095
摘要

Depression causes significant physical and psychosocial morbidity. Predicting persistence of depressive symptoms could permit targeted prevention, and lessen the burden of depression. Machine learning is a rapidly expanding field, and such approaches offer powerful predictive abilities. We investigated the utility of a machine learning approach to predict the persistence of depressive symptoms in older adults.Baseline demographic and psychometric data from 284 patients were used to predict the likelihood of older adults having persistent depressive symptoms after 12 months, using a machine learning approach ('extreme gradient boosting'). Predictive performance was compared to a conventional statistical approach (logistic regression). Data were drawn from the 'treatment-as-usual' arm of the CASPER (CollAborative care and active surveillance for Screen-Positive EldeRs with subthreshold depression) trial.Predictive performance was superior using machine learning compared to logistic regression (mean AUC 0.72 vs. 0.67, p < 0.0001). Using machine learning, an average of 89% of those predicted to have PHQ-9 scores above threshold at 12 months actually did, compared to 78% using logistic regression. However, mean negative predictive values were somewhat lower for the machine learning approach (45% vs. 35%).A relatively small sample size potentially limited the predictive power of the algorithm. In addition, PHQ-9 scores were used as an indicator of persistent depressive symptoms, and whilst well validated, a clinical interview would have been preferable.Overall, our findings support the potential application of machine learning in personalised mental healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赵卓发布了新的文献求助10
1秒前
高源完成签到,获得积分20
2秒前
好运来发发发完成签到,获得积分10
2秒前
Jasper应助7_蜗牛采纳,获得10
2秒前
充电宝应助机智的寒天采纳,获得10
2秒前
3秒前
wss发布了新的文献求助10
3秒前
华仔应助秧秧采纳,获得10
3秒前
beenest完成签到,获得积分10
4秒前
Dr.zhong发布了新的文献求助10
4秒前
4秒前
5秒前
鲸鱼发布了新的文献求助10
5秒前
长情的尔蓝完成签到,获得积分10
6秒前
6秒前
心灵美诗霜完成签到,获得积分10
6秒前
江鑫楷完成签到,获得积分20
6秒前
万能图书馆应助乖乖采纳,获得10
6秒前
CipherSage应助wss采纳,获得10
7秒前
lyf完成签到,获得积分10
8秒前
刘子寒发布了新的文献求助10
8秒前
8秒前
sandy完成签到,获得积分10
8秒前
方杰完成签到,获得积分10
8秒前
CodeCraft应助Luhh采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
兰兰完成签到,获得积分10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
阳和启蛰完成签到,获得积分10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
9秒前
王大可完成签到 ,获得积分10
9秒前
思源应助香饽饽采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
9秒前
浮游应助科研通管家采纳,获得10
9秒前
斯文败类应助甜美的青柏采纳,获得10
9秒前
jie酱拌面应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559