Predicting persistent depressive symptoms in older adults: A machine learning approach to personalised mental healthcare

逻辑回归 机器学习 社会心理的 病人健康调查表 人工智能 萧条(经济学) 预测能力 医学 抑郁症状 精神科 计算机科学 焦虑 认识论 哲学 宏观经济学 经济
作者
Christopher M. Hatton,Lewis W. Paton,Dean McMillan,James Cussens,Simon Gilbody,Paul A. Tiffin
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:246: 857-860 被引量:68
标识
DOI:10.1016/j.jad.2018.12.095
摘要

Depression causes significant physical and psychosocial morbidity. Predicting persistence of depressive symptoms could permit targeted prevention, and lessen the burden of depression. Machine learning is a rapidly expanding field, and such approaches offer powerful predictive abilities. We investigated the utility of a machine learning approach to predict the persistence of depressive symptoms in older adults.Baseline demographic and psychometric data from 284 patients were used to predict the likelihood of older adults having persistent depressive symptoms after 12 months, using a machine learning approach ('extreme gradient boosting'). Predictive performance was compared to a conventional statistical approach (logistic regression). Data were drawn from the 'treatment-as-usual' arm of the CASPER (CollAborative care and active surveillance for Screen-Positive EldeRs with subthreshold depression) trial.Predictive performance was superior using machine learning compared to logistic regression (mean AUC 0.72 vs. 0.67, p < 0.0001). Using machine learning, an average of 89% of those predicted to have PHQ-9 scores above threshold at 12 months actually did, compared to 78% using logistic regression. However, mean negative predictive values were somewhat lower for the machine learning approach (45% vs. 35%).A relatively small sample size potentially limited the predictive power of the algorithm. In addition, PHQ-9 scores were used as an indicator of persistent depressive symptoms, and whilst well validated, a clinical interview would have been preferable.Overall, our findings support the potential application of machine learning in personalised mental healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
1秒前
传奇3应助lyyy采纳,获得10
1秒前
1秒前
1秒前
山丘完成签到,获得积分10
2秒前
3秒前
知性的冰棍完成签到,获得积分10
3秒前
3秒前
大个应助叶子采纳,获得50
3秒前
3秒前
CodeCraft应助这小猪真帅采纳,获得10
4秒前
4秒前
ZDY完成签到,获得积分10
4秒前
emilybei发布了新的文献求助10
4秒前
4秒前
cc发布了新的文献求助30
4秒前
4秒前
5秒前
雨渺清空完成签到 ,获得积分10
6秒前
6秒前
xzz完成签到,获得积分10
7秒前
yuaasusanaann发布了新的文献求助10
7秒前
刚睡醒发布了新的文献求助10
7秒前
JIaaaa发布了新的文献求助10
8秒前
xuexue完成签到,获得积分10
8秒前
8秒前
宋子琛发布了新的文献求助10
9秒前
SYozi完成签到,获得积分20
9秒前
车厘子发布了新的文献求助10
10秒前
彭于晏应助研友_8QyXr8采纳,获得10
10秒前
武映易完成签到 ,获得积分10
10秒前
12秒前
斯琪欣完成签到,获得积分10
13秒前
xuemengyao发布了新的文献求助10
13秒前
科研通AI5应助21采纳,获得10
14秒前
贪玩手链完成签到 ,获得积分10
15秒前
16秒前
Hatexist应助无心的星月采纳,获得10
18秒前
18秒前
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998144
求助须知:如何正确求助?哪些是违规求助? 3537656
关于积分的说明 11272231
捐赠科研通 3276814
什么是DOI,文献DOI怎么找? 1807126
邀请新用户注册赠送积分活动 883718
科研通“疑难数据库(出版商)”最低求助积分说明 810014