作者
Denis A. Mogilenko,Joel E. Haas,Laurent L’homme,Sébastien Fleury,Sandrine Quemener,M. Levavasseur,C. Becquart,Julien Wartelle,A. M. Bogomolova,Laurent Pineau,Olivier Molendi‐Coste,Steve Lancel,Hélène Dehondt,Céline Gheeraert,Aurélie Melchior,Cédric Dewas,Artemii Nikitin,Samuel Pic,Nabil Rabhi,Jean-Sébastien Annicotte,Seiichi Oyadomari,Talía Velasco-Hernández,Jörg Cammenga,Marc Foretz,Benoı̂t Viollet,Milica Vukovic,Arnaud Villacreces,Kamil R. Kranc,Peter Carmeliet,Guillemette Marot,Alexis Boulter,Simon Tavernier,Luciana Berod,M. Paula Longhi,Christophe Paget,Sophie Janssens,D. Staumont‐Sallé,Ezra Aksoy,Bart Staels,David Dombrowicz
摘要
Innate immune responses are intricately linked with intracellular metabolism of myeloid cells. Toll-like receptor (TLR) stimulation shifts intracellular metabolism toward glycolysis, while anti-inflammatory signals depend on enhanced mitochondrial respiration. How exogenous metabolic signals affect the immune response is unknown. We demonstrate that TLR-dependent responses of dendritic cells (DCs) are exacerbated by a high-fatty-acid (FA) metabolic environment. FAs suppress the TLR-induced hexokinase activity and perturb tricarboxylic acid cycle metabolism. These metabolic changes enhance mitochondrial reactive oxygen species (mtROS) production and, in turn, the unfolded protein response (UPR), leading to a distinct transcriptomic signature with IL-23 as hallmark. Interestingly, chemical or genetic suppression of glycolysis was sufficient to induce this specific immune response. Conversely, reducing mtROS production or DC-specific deficiency in XBP1 attenuated IL-23 expression and skin inflammation in an IL-23-dependent model of psoriasis. Thus, fine-tuning of innate immunity depends on optimization of metabolic demands and minimization of mtROS-induced UPR.