Context-Aware and Depthwise-based Detection on Orbit for Remote Sensing Image

计算机科学 目标检测 人工智能 背景(考古学) 卫星 卷积神经网络 计算机视觉 遥感 模式识别(心理学) 生物 地质学 工程类 航空航天工程 古生物学
作者
Yanmei Fu,Fengge Wu,Junsuo Zhao
标识
DOI:10.1109/icpr.2018.8545815
摘要

Automatic detection on orbit is an efficient way to filter useless data downloaded to the ground. However, detection on orbit is a challenging task due to limited computational resources on the satellite. In this paper, a context-aware and depthwise-based detection framework for remote sensing images is proposed which can be used on orbit. In the result of limited computational resources on the satellite, on-orbit object detection should detect with low memory cost and fast speed while ensuring the accuracy. To address the problem of small model in the process of feature extracting, a depthwise convolution is applied instead of typical convolution. In this light, a small deep neural network is built to run on orbit, using Single Shot Multibox Detector (SSD) as basic detection module. Motivated by its weak performance on remote sensing image owing to few pixel about target object, context information about target object is added to improve performance. To further investigate the context information influence, we add a balance factor to balance the context information and background noise it brings. Then an experiment on real remote sensing image dataset is conducted comparing our extended model with other current state-of-the-art detection models. Results show our extended model outperforms other models in accuracy and speed. Deploying the pretrained model on the Android Platform with only 60M memory cost confirms the feasibility to detect on orbit. This detection system is to be verified on the TZ-1 satellite which will be launched in the year of 2018.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨天完成签到,获得积分10
刚刚
刚刚
刚刚
fangyuan完成签到,获得积分10
刚刚
Chenq1nss发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
躺躺发布了新的文献求助10
4秒前
fangyuan发布了新的文献求助10
5秒前
追寻的怜容完成签到,获得积分10
5秒前
酷波er应助tkx是流氓兔采纳,获得10
6秒前
ding应助ffffffff采纳,获得30
7秒前
WWW关闭了WWW文献求助
8秒前
春和景明完成签到,获得积分10
8秒前
啊啊完成签到,获得积分20
10秒前
月上柳梢头A1完成签到,获得积分10
11秒前
无花果应助淡然老头采纳,获得10
14秒前
15秒前
李健的粉丝团团长应助ylh采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
小马甲应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
天天快乐应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
小马甲应助科研通管家采纳,获得10
20秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
桐桐应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
轻松妙柏完成签到,获得积分10
21秒前
22秒前
Chenq1nss完成签到,获得积分10
23秒前
24秒前
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497949
关于积分的说明 11089475
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309