freud: A software suite for high throughput analysis of particle simulation data

Python(编程语言) 计算机科学 脚本语言 软件 工作流程 计算科学 一套 程序设计语言 数据库 历史 考古
作者
Vyas Ramasubramani,Bradley Dice,Eric Harper,Matthew Spellings,Joshua A. Anderson,Sharon C. Glotzer
出处
期刊:Computer Physics Communications [Elsevier]
卷期号:254: 107275-107275 被引量:201
标识
DOI:10.1016/j.cpc.2020.107275
摘要

Abstract The freud  Python package is a library for analyzing simulation data. Written with modern simulation and data analysis workflows in mind, freud  provides a Python interface to fast, parallelized C++ routines that run efficiently on laptops, workstations, and supercomputing clusters. The package provides the core tools for finding particle neighbors in periodic systems, and offers a uniform API to a wide variety of methods implemented using these tools. As such, freud  users can access standard methods such as the radial distribution function as well as newer, more specialized methods such as the potential of mean force and torque and local crystal environment analysis with equal ease. Rather than providing its own trajectory data structure, freud  operates either directly on NumPy arrays or on trajectory data structures provided by other Python packages. This design allows freud  to transparently interface with many trajectory file formats by leveraging the file parsing abilities of other trajectory management tools. By remaining agnostic to its data source, freud  is suitable for analyzing any particle simulation, regardless of the original data representation or simulation method. When used for on-the-fly analysis in conjunction with scriptable simulation software such as HOOMD-blue, freud  enables smart simulations that adapt to the current state of the system, allowing users to study phenomena such as nucleation and growth. Program summary Program Title: freud Program Files doi: http://dx.doi.org/10.17632/v7wmv9xcct.1 Licensing provisions: BSD 3-Clause Programming language: Python, C++ Nature of problem: Simulations of coarse-grained, nano-scale, and colloidal particle systems typically require analyses specialized to a particular system. Certain more standardized techniques – including correlation functions, order parameters, and clustering – are computationally intensive tasks that must be carefully implemented to scale to the larger systems common in modern simulations. Solution method: freud  performs a wide variety of particle system analyses, offering a Python API that interfaces with many other tools in computational molecular sciences via NumPy array inputs and outputs. The algorithms in freud  leverage parallelized C++ to scale to large systems and enable real-time analysis. The library’s broad set of features encode few assumptions compared to other analysis packages, enabling analysis of a broader class of data ranging from biomolecular simulations to colloidal experiments. Additional comments including restrictions and unusual features: 1. freud  provides very fast parallel implementations of standard analysis methods like RDFs and correlation functions. 2. freud  includes the reference implementation for the potential of mean force and torque (PMFT). 3. freud  provides various novel methods for characterizing particle environments, including the calculation of descriptors useful for machine learning. The source code is hosted on GitHub ( https://github.com/glotzerlab/freud ), and documentation is available online ( https://freud.readthedocs.io/ ). The package may be installed via pip install freud-analysis or conda install -c conda-forge freud .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丘比特应助挽风采纳,获得10
1秒前
cc完成签到,获得积分10
1秒前
3秒前
Dan发布了新的文献求助10
4秒前
Joyce应助眼睛大的尔蝶采纳,获得10
4秒前
李Li发布了新的文献求助10
6秒前
赘婿应助zhzssaijj采纳,获得10
7秒前
8秒前
雾非雾发布了新的文献求助10
9秒前
10秒前
11秒前
cc完成签到,获得积分10
12秒前
科研通AI2S应助苹果白凡采纳,获得10
12秒前
小蘑菇应助刻苦的荆采纳,获得10
12秒前
sun发布了新的文献求助10
13秒前
生生不息发布了新的文献求助20
14秒前
14秒前
yunqian完成签到,获得积分10
14秒前
wengjiaqi发布了新的文献求助10
14秒前
14秒前
17秒前
17秒前
小博发布了新的文献求助10
18秒前
书是人类进步的阶梯完成签到 ,获得积分10
19秒前
赘婿应助闵凡麒采纳,获得30
19秒前
来了完成签到,获得积分10
19秒前
共享精神应助刻苦的荆采纳,获得10
20秒前
21秒前
CoCo完成签到 ,获得积分10
24秒前
124332发布了新的文献求助10
24秒前
25秒前
27秒前
爆米花应助zhang采纳,获得10
28秒前
28秒前
28秒前
28秒前
30秒前
30秒前
31秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265265
求助须知:如何正确求助?哪些是违规求助? 2905165
关于积分的说明 8333089
捐赠科研通 2575592
什么是DOI,文献DOI怎么找? 1399932
科研通“疑难数据库(出版商)”最低求助积分说明 654613
邀请新用户注册赠送积分活动 633471