错误发现率
推论
多重比较问题
模式识别(心理学)
神经影像学
数学
统计
标称水平
扩展(谓词逻辑)
噪音(视频)
算法
特征(语言学)
高斯分布
统计推断
计算机科学
人工智能
物理
心理学
生物
神经科学
置信区间
哲学
图像(数学)
基因
量子力学
生物化学
程序设计语言
语言学
作者
Armin Schwartzman,Fabian J. E. Telschow
出处
期刊:NeuroImage
[Elsevier]
日期:2019-04-24
卷期号:197: 402-413
被引量:8
标识
DOI:10.1016/j.neuroimage.2019.04.041
摘要
Peaks are a mainstay of neuroimage analysis for reporting localization results. The current peak detection procedure in SPM12 requires a pre-threshold for approximating p-values and a false discovery rate (FDR) nominal level for inference. However, the pre-threshold is an undesirable feature, while the FDR level is meaningless if the null hypothesis is not properly defined. This article provides: 1) a peak height distribution for smooth Gaussian error fields, which does not require a screening pre-threshold; 2) a signal-plus-noise model where FDR of peaks can be controlled and properly interpreted. Matlab code for calculation of p-values using the exact peak height distribution is available as an SPM extension.
科研通智能强力驱动
Strongly Powered by AbleSci AI