SDResU-Net: Separable and Dilated Residual U-Net for MRI Brain Tumor Segmentation

模式识别(心理学) 磁共振成像 网(多面体) 人工神经网络 可分离空间
作者
Jianxin Zhang,Xiaogang Lv,Qiule Sun,Qiang Zhang,Xiaopeng Wei,Bin Liu
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:16 (6): 720-728 被引量:9
标识
DOI:10.2174/1573405615666190808105746
摘要

Background Glioma is one of the most common and aggressive primary brain tumors that endanger human health. Tumors segmentation is a key step in assisting the diagnosis and treatment of cancer disease. However, it is a relatively challenging task to precisely segment tumors considering characteristics of brain tumors and the device noise. Recently, with the breakthrough development of deep learning, brain tumor segmentation methods based on fully convolutional neural network (FCN) have illuminated brilliant performance and attracted more and more attention. Methods In this work, we propose a novel FCN based network called SDResU-Net for brain tumor segmentation, which simultaneously embeds dilated convolution and separable convolution into residual U-Net architecture. SDResU-Net introduces dilated block into a residual U-Net architecture, which largely expends the receptive field and gains better local and global feature descriptions capacity. Meanwhile, to fully utilize the channel and region information of MRI brain images, we separate the internal and inter-slice structures of the improved residual U-Net by employing separable convolution operator. The proposed SDResU-Net captures more pixel-level details and spatial information, which provides a considerable alternative for the automatic and accurate segmentation of brain tumors. Results and conclusion The proposed SDResU-Net is extensively evaluated on two public MRI brain image datasets, i.e., BraTS 2017 and BraTS 2018. Compared with its counterparts and stateof- the-arts, SDResU-Net gains superior performance on both datasets, showing its effectiveness. In addition, cross-validation results on two datasets illuminate its satisfying generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
吕健应助jam采纳,获得10
1秒前
勤奋的大便完成签到 ,获得积分10
2秒前
asss完成签到,获得积分20
3秒前
赘婿应助blue2021采纳,获得10
5秒前
NexusExplorer应助Wiesen采纳,获得10
5秒前
小埋发布了新的文献求助10
5秒前
俊逸鸣凤完成签到,获得积分20
6秒前
6秒前
李健应助jialin采纳,获得10
8秒前
帆希完成签到,获得积分10
8秒前
传统的纸飞机完成签到 ,获得积分10
9秒前
9秒前
小二郎应助asdfqwer采纳,获得10
9秒前
sluck发布了新的文献求助10
10秒前
飞火完成签到,获得积分10
11秒前
bkagyin应助QI采纳,获得10
11秒前
akmdh完成签到,获得积分10
11秒前
jin发布了新的文献求助10
13秒前
奕安完成签到,获得积分10
14秒前
14秒前
15秒前
犹豫溪灵完成签到,获得积分10
15秒前
15秒前
R喻andom完成签到,获得积分10
16秒前
17秒前
奕安发布了新的文献求助10
18秒前
李健应助努力学习ing采纳,获得10
18秒前
婳祎完成签到 ,获得积分10
19秒前
桐桐应助ZXR采纳,获得10
19秒前
whisper发布了新的文献求助10
19秒前
英姑应助叶远望采纳,获得10
20秒前
jiefeng123完成签到 ,获得积分20
20秒前
20秒前
jialin发布了新的文献求助10
20秒前
慕青应助jin采纳,获得10
21秒前
金阿垚在科研应助CC采纳,获得10
22秒前
blue2021发布了新的文献求助10
23秒前
大个应助布丁采纳,获得10
24秒前
田田田发布了新的文献求助10
25秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
How to mix methods: A guide to sequential, convergent, and experimental research designs 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3112109
求助须知:如何正确求助?哪些是违规求助? 2762259
关于积分的说明 7669812
捐赠科研通 2417362
什么是DOI,文献DOI怎么找? 1283102
科研通“疑难数据库(出版商)”最低求助积分说明 619297
版权声明 599583