清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Mastering Machine Learning Algorithms

机器学习 人工智能 Python(编程语言) 计算机科学 无监督学习 学习分类器系统 算法 降维 深度学习 基于实例的学习 人工神经网络 在线机器学习 程序设计语言
作者
Giuseppe Bonaccorso
摘要

Updated and revised second edition of the bestselling guide to exploring and mastering the most important algorithms for solving complex machine learning problems Key Features Updated to include new algorithms and techniques Code updated to Python 3.8 & TensorFlow 2.x New coverage of regression analysis, time series analysis, deep learning models, and cutting-edge applications Book Description Mastering Machine Learning Algorithms, Second Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains. You will use all the modern libraries from the Python ecosystem – including NumPy and Keras – to extract features from varied complexities of data. Ranging from Bayesian models to the Markov chain Monte Carlo algorithm to Hidden Markov models, this machine learning book teaches you how to extract features from your dataset, perform complex dimensionality reduction, and train supervised and semi-supervised models by making use of Python-based libraries such as scikit-learn. You will also discover practical applications for complex techniques such as maximum likelihood estimation, Hebbian learning, and ensemble learning, and how to use TensorFlow 2.x to train effective deep neural networks. By the end of this book, you will be ready to implement and solve end-to-end machine learning problems and use case scenarios. What you will learn Understand the characteristics of a machine learning algorithm Implement algorithms from supervised, semi-supervised, unsupervised, and RL domains Learn how regression works in time-series analysis and risk prediction Create, model, and train complex probabilistic models Cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work – train, optimize, and validate them Work with autoencoders, Hebbian networks, and GANs Who this book is for This book is for data science professionals who want to delve into complex ML algorithms to understand how various machine learning models can be built. Knowledge of Python programming is required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yj发布了新的文献求助10
刚刚
tctc完成签到,获得积分10
2秒前
丰知然应助livra1058采纳,获得10
7秒前
15秒前
herpes完成签到 ,获得积分10
16秒前
22秒前
ceeray23应助隋嫣然采纳,获得10
29秒前
46秒前
livra1058完成签到,获得积分10
47秒前
1437594843完成签到 ,获得积分10
48秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
IlIIlIlIIIllI应助科研通管家采纳,获得10
54秒前
方羽应助科研通管家采纳,获得50
54秒前
1分钟前
1分钟前
刘刘完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
申木完成签到 ,获得积分10
2分钟前
2分钟前
积极的台灯应助luckss采纳,获得10
2分钟前
2分钟前
方羽应助科研通管家采纳,获得50
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
flysky120完成签到,获得积分10
3分钟前
3分钟前
tctc关注了科研通微信公众号
3分钟前
3分钟前
tranphucthinh完成签到,获得积分10
3分钟前
浚稚完成签到 ,获得积分10
3分钟前
飞翔的企鹅完成签到,获得积分0
3分钟前
3分钟前
wwe完成签到,获得积分10
3分钟前
3分钟前
tctc发布了新的文献求助10
3分钟前
胜天半子完成签到 ,获得积分10
3分钟前
刻苦代灵完成签到,获得积分20
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Examining the relationship between working capital management and firm performance: a state-of-the-art literature review and visualisation analysis 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445148
求助须知:如何正确求助?哪些是违规求助? 3041200
关于积分的说明 8984041
捐赠科研通 2729756
什么是DOI,文献DOI怎么找? 1497162
科研通“疑难数据库(出版商)”最低求助积分说明 692167
邀请新用户注册赠送积分活动 689714