已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mastering Machine Learning Algorithms

机器学习 人工智能 Python(编程语言) 计算机科学 无监督学习 学习分类器系统 算法 降维 深度学习 基于实例的学习 人工神经网络 在线机器学习 程序设计语言
作者
Giuseppe Bonaccorso
摘要

Updated and revised second edition of the bestselling guide to exploring and mastering the most important algorithms for solving complex machine learning problems Key Features Updated to include new algorithms and techniques Code updated to Python 3.8 & TensorFlow 2.x New coverage of regression analysis, time series analysis, deep learning models, and cutting-edge applications Book Description Mastering Machine Learning Algorithms, Second Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains. You will use all the modern libraries from the Python ecosystem – including NumPy and Keras – to extract features from varied complexities of data. Ranging from Bayesian models to the Markov chain Monte Carlo algorithm to Hidden Markov models, this machine learning book teaches you how to extract features from your dataset, perform complex dimensionality reduction, and train supervised and semi-supervised models by making use of Python-based libraries such as scikit-learn. You will also discover practical applications for complex techniques such as maximum likelihood estimation, Hebbian learning, and ensemble learning, and how to use TensorFlow 2.x to train effective deep neural networks. By the end of this book, you will be ready to implement and solve end-to-end machine learning problems and use case scenarios. What you will learn Understand the characteristics of a machine learning algorithm Implement algorithms from supervised, semi-supervised, unsupervised, and RL domains Learn how regression works in time-series analysis and risk prediction Create, model, and train complex probabilistic models Cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work – train, optimize, and validate them Work with autoencoders, Hebbian networks, and GANs Who this book is for This book is for data science professionals who want to delve into complex ML algorithms to understand how various machine learning models can be built. Knowledge of Python programming is required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
Hello应助MIA采纳,获得10
6秒前
8秒前
10秒前
额狐狸发布了新的文献求助30
11秒前
花花懿懿发布了新的文献求助10
13秒前
13秒前
粽子发布了新的文献求助10
14秒前
852应助小滕采纳,获得10
14秒前
VDC发布了新的文献求助10
15秒前
三眼五显完成签到 ,获得积分10
16秒前
17秒前
ab完成签到,获得积分10
19秒前
三眼五显关注了科研通微信公众号
20秒前
花花懿懿完成签到,获得积分10
21秒前
aaaaa发布了新的文献求助30
22秒前
鲜于元龙发布了新的文献求助10
24秒前
echo发布了新的文献求助10
25秒前
君华海逸完成签到,获得积分10
27秒前
27秒前
28秒前
温馨家园完成签到 ,获得积分10
29秒前
ccm应助曾经豌豆采纳,获得10
29秒前
万能图书馆应助我我我采纳,获得10
29秒前
Kn完成签到 ,获得积分10
31秒前
31秒前
33秒前
SJ发布了新的文献求助30
35秒前
35秒前
万崽秋秋糖完成签到 ,获得积分10
40秒前
40秒前
钮小童完成签到,获得积分10
42秒前
44秒前
小五发布了新的文献求助10
45秒前
球球了发布了新的文献求助10
49秒前
有机发布了新的文献求助10
50秒前
完美世界应助yutj采纳,获得10
53秒前
科研通AI2S应助球球了采纳,获得10
57秒前
SJ完成签到,获得积分10
58秒前
NexusExplorer应助有机采纳,获得10
59秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136894
求助须知:如何正确求助?哪些是违规求助? 2787866
关于积分的说明 7783497
捐赠科研通 2443945
什么是DOI,文献DOI怎么找? 1299488
科研通“疑难数据库(出版商)”最低求助积分说明 625461
版权声明 600954