Structural connectivity and weight loss in children with obesity: a study of the “connectobese”

中间性中心性 连接体 聚类系数 连接组学 认知 磁共振弥散成像 医学 神经科学 心理学 部分各向异性 发展心理学 中心性 聚类分析 磁共振成像 功能连接 机器学习 放射科 计算机科学 组合数学 数学
作者
Mireille Augustijn,Maria A. Di Biase,Andrew Zalesky,Lore Van Acker,Ann De Guchtenaere,Eva D’Hondt,Matthieu Lenoir,Frederik Deconinck,Karen Caeyenberghs
出处
期刊:International Journal of Obesity [Springer Nature]
卷期号:43 (11): 2309-2321 被引量:12
标识
DOI:10.1038/s41366-019-0380-6
摘要

Previous studies suggest that obesity (OB) is associated with disrupted brain network organization; however, it remains unclear whether these differences already exist during childhood. Moreover, it should be investigated whether deviant network organization may be susceptible to treatment. Here, we compared the structural connectomes of children with OB with age-matched healthy weight (HW) controls (aged 7–11 years). In addition, we examined the effect of a multidisciplinary treatment program, consisting of diet restriction, cognitive behavioral therapy, and physical activity for children with OB on brain network organization. After stringent quality assessment criteria, 40 (18 OB, 22 HW) data sets of the total sample of 51 participants (25 OB, 26 HW) were included in further analyses. For all participants, anthropometric measurements were administered twice, with a 5-month interval between pre- and post tests. Pre- and post T1- and diffusion-weighted imaging scans were also acquired and analyzed using a graph-theoretical approach and network-based statistics. Global network analyses revealed a significantly increased normalized clustering coefficient and small-worldness in children with OB compared with HW controls. In addition, regional analyses revealed increased betweenness centrality, reduced clustering coefficient, and increased structural network strength in children with OB, mainly in the motor cortex and reward network. Importantly, children with OB lost a considerable amount of their body mass after the treatment; however, no changes were observed in the organization of their brain networks. This is the first study showing disrupted structural connectomes of children with OB, especially in the motor and reward network. These results provide new insights into the pathophysiology underlying childhood obesity. The treatment did result in a significant weight loss, which was however not associated with alterations in the brain networks. These findings call for larger samples to examine the impact of short-term and long-term weight loss (treatment) on children's brain network organization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
taotao完成签到,获得积分10
1秒前
1秒前
Keping发布了新的文献求助10
2秒前
Bo发布了新的文献求助10
2秒前
上官若男应助echo采纳,获得10
2秒前
六号线完成签到,获得积分10
2秒前
小蘑菇应助温婉的念文采纳,获得10
2秒前
NexusExplorer应助潮汐采纳,获得10
2秒前
xi发布了新的文献求助10
2秒前
3秒前
柚子完成签到,获得积分10
3秒前
是阿刁完成签到,获得积分10
3秒前
Lightdream__完成签到,获得积分10
3秒前
3秒前
小筱发布了新的文献求助10
4秒前
4秒前
ly完成签到,获得积分20
4秒前
空古悠浪发布了新的文献求助10
4秒前
无花果应助penguinli采纳,获得10
4秒前
sivan发布了新的文献求助10
4秒前
king完成签到,获得积分10
5秒前
TristanGuan发布了新的文献求助10
5秒前
5秒前
打打应助李端端采纳,获得10
5秒前
wanci应助铃儿响叮党采纳,获得10
6秒前
BowieHuang应助inininch采纳,获得50
7秒前
充电宝应助一口一个汤包采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
Liandong应助li采纳,获得10
7秒前
big龙发布了新的文献求助10
8秒前
8秒前
Lucas应助研友_ZrBNxZ采纳,获得30
8秒前
Tici完成签到,获得积分10
8秒前
墨染完成签到 ,获得积分10
9秒前
dahua完成签到,获得积分10
9秒前
无花果应助zss采纳,获得10
9秒前
9秒前
king发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711035
求助须知:如何正确求助?哪些是违规求助? 5202070
关于积分的说明 15263091
捐赠科研通 4863454
什么是DOI,文献DOI怎么找? 2610771
邀请新用户注册赠送积分活动 1561017
关于科研通互助平台的介绍 1518534