Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy

计算机科学 人工智能 放射治疗计划 成像体模 算法
作者
Matteo Maspero,Mark H. F. Savenije,Anna M. Dinkla,Peter R. Seevinck,Martijn Intven,Ina M. Jürgenliemk-Schulz,Linda G W Kerkmeijer,Cornelis A. T. van den Berg
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:63 (18): 185001-185001 被引量:132
标识
DOI:10.1088/1361-6560/aada6d
摘要

To enable magnetic resonance (MR)-only radiotherapy and facilitate modelling of radiation attenuation in humans, synthetic CT (sCT) images need to be generated. Considering the application of MR-guided radiotherapy and online adaptive replanning, sCT generation should occur within minutes. This work aims at assessing whether an existing deep learning network can rapidly generate sCT images for accurate MR-based dose calculations in the entire pelvis. A study was conducted on data of 91 patients with prostate (59), rectal (18) and cervical (14) cancer who underwent external beam radiotherapy acquiring both CT and MRI for patients' simulation. Dixon reconstructed water, fat and in-phase images obtained from a conventional dual gradient-recalled echo sequence were used to generate sCT images. A conditional generative adversarial network (cGAN) was trained in a paired fashion on 2D transverse slices of 32 prostate cancer patients. The trained network was tested on the remaining patients to generate sCT images. For 30 patients in the test set, dose recalculations of the clinical plan were performed on sCT images. Dose distributions were evaluated comparing voxel-based dose differences, gamma and dose-volume histogram (DVH) analysis. The sCT generation required 5.6 s and 21 s for a single patient volume on a GPU and CPU, respectively. On average, sCT images resulted in a higher dose to the target of maximum 0.3%. The average gamma pass rates using the 3%, 3 mm and 2%, 2 mm criteria were above 97 and 91%, respectively, for all volumes of interests considered. All DVH points calculated on sCT differed less than ±2.5% from the corresponding points on CT. Results suggest that accurate MR-based dose calculation using sCT images generated with a cGAN trained on prostate cancer patients is feasible for the entire pelvis. The sCT generation was sufficiently fast for integration in an MR-guided radiotherapy workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助云轩采纳,获得10
刚刚
jinx123456完成签到,获得积分10
2秒前
单纯冰棍完成签到,获得积分20
2秒前
金海完成签到,获得积分10
2秒前
liqian发布了新的文献求助10
2秒前
2秒前
XIEMIN完成签到,获得积分10
3秒前
贺贺完成签到 ,获得积分20
4秒前
4秒前
悦耳荟完成签到,获得积分10
4秒前
5秒前
5秒前
joejo1124完成签到 ,获得积分10
6秒前
sl发布了新的文献求助10
7秒前
hhh发布了新的文献求助10
7秒前
爱吃藕粉凉羹的奶油完成签到,获得积分20
8秒前
动听煎饼完成签到 ,获得积分10
9秒前
明理冬瓜完成签到,获得积分10
9秒前
bkagyin应助cldg采纳,获得10
9秒前
小马甲应助不站在雾里采纳,获得10
9秒前
pp完成签到 ,获得积分0
10秒前
zhangjianzeng完成签到 ,获得积分10
10秒前
史小菜应助云轩采纳,获得20
11秒前
伏伏雅逸发布了新的文献求助10
11秒前
李健应助荒野风采纳,获得10
12秒前
Popeye应助单纯血茗采纳,获得10
12秒前
淡然冬灵发布了新的文献求助10
12秒前
Popeye应助单纯血茗采纳,获得10
12秒前
荔枝的油饼iKun完成签到,获得积分10
13秒前
Bosen完成签到,获得积分10
13秒前
Astraeus完成签到 ,获得积分10
14秒前
fengyuenanche完成签到,获得积分10
15秒前
五虎完成签到,获得积分10
16秒前
Akim应助Rollei采纳,获得10
17秒前
hoshi1018完成签到,获得积分10
18秒前
友好曲奇完成签到,获得积分10
18秒前
dongdong完成签到 ,获得积分10
19秒前
CR7完成签到,获得积分0
20秒前
左丘忻完成签到,获得积分10
20秒前
凤迎雪飘完成签到,获得积分10
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048