Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy

计算机科学 人工智能 放射治疗计划 成像体模 算法
作者
Matteo Maspero,Mark H. F. Savenije,Anna M. Dinkla,Peter R. Seevinck,Martijn Intven,Ina M. Jürgenliemk-Schulz,Linda G W Kerkmeijer,Cornelis A. T. van den Berg
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:63 (18): 185001-185001 被引量:132
标识
DOI:10.1088/1361-6560/aada6d
摘要

To enable magnetic resonance (MR)-only radiotherapy and facilitate modelling of radiation attenuation in humans, synthetic CT (sCT) images need to be generated. Considering the application of MR-guided radiotherapy and online adaptive replanning, sCT generation should occur within minutes. This work aims at assessing whether an existing deep learning network can rapidly generate sCT images for accurate MR-based dose calculations in the entire pelvis. A study was conducted on data of 91 patients with prostate (59), rectal (18) and cervical (14) cancer who underwent external beam radiotherapy acquiring both CT and MRI for patients' simulation. Dixon reconstructed water, fat and in-phase images obtained from a conventional dual gradient-recalled echo sequence were used to generate sCT images. A conditional generative adversarial network (cGAN) was trained in a paired fashion on 2D transverse slices of 32 prostate cancer patients. The trained network was tested on the remaining patients to generate sCT images. For 30 patients in the test set, dose recalculations of the clinical plan were performed on sCT images. Dose distributions were evaluated comparing voxel-based dose differences, gamma and dose-volume histogram (DVH) analysis. The sCT generation required 5.6 s and 21 s for a single patient volume on a GPU and CPU, respectively. On average, sCT images resulted in a higher dose to the target of maximum 0.3%. The average gamma pass rates using the 3%, 3 mm and 2%, 2 mm criteria were above 97 and 91%, respectively, for all volumes of interests considered. All DVH points calculated on sCT differed less than ±2.5% from the corresponding points on CT. Results suggest that accurate MR-based dose calculation using sCT images generated with a cGAN trained on prostate cancer patients is feasible for the entire pelvis. The sCT generation was sufficiently fast for integration in an MR-guided radiotherapy workflow.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SAD发布了新的文献求助20
刚刚
1秒前
qinghe完成签到,获得积分10
1秒前
XZTX完成签到,获得积分10
1秒前
绞股蓝完成签到,获得积分10
1秒前
Vegetable_Dog发布了新的文献求助10
2秒前
2秒前
科研通AI6.1应助Hydro采纳,获得10
2秒前
3秒前
希望早睡完成签到,获得积分10
3秒前
Lucas应助若杉采纳,获得10
5秒前
5秒前
Liii完成签到,获得积分10
5秒前
不会打预防针完成签到,获得积分10
5秒前
6秒前
勤恳易谙发布了新的文献求助10
6秒前
7秒前
欣欣向荣完成签到,获得积分10
7秒前
吴颖发布了新的文献求助10
7秒前
zeta完成签到 ,获得积分10
7秒前
wzhnb完成签到 ,获得积分20
8秒前
aicxx发布了新的文献求助10
8秒前
秋空发布了新的文献求助10
9秒前
乐正亦寒完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
史迪仔爱学习完成签到,获得积分10
10秒前
彩色从雪完成签到,获得积分10
10秒前
10秒前
10秒前
吸尘器完成签到,获得积分10
11秒前
11秒前
11秒前
豆丁完成签到,获得积分10
11秒前
百羊完成签到,获得积分10
12秒前
情怀应助彭友圈采纳,获得10
12秒前
荷叶边边头完成签到,获得积分10
12秒前
12秒前
藏藏发布了新的文献求助10
13秒前
donny发布了新的文献求助10
13秒前
qzj发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784063
求助须知:如何正确求助?哪些是违规求助? 5680443
关于积分的说明 15462954
捐赠科研通 4913367
什么是DOI,文献DOI怎么找? 2644620
邀请新用户注册赠送积分活动 1592452
关于科研通互助平台的介绍 1547078