已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy

计算机科学 人工智能 放射治疗计划 成像体模 算法
作者
Matteo Maspero,Mark H. F. Savenije,Anna M. Dinkla,Peter R. Seevinck,Martijn Intven,Ina M. Jürgenliemk-Schulz,Linda G W Kerkmeijer,Cornelis A. T. van den Berg
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:63 (18): 185001-185001 被引量:132
标识
DOI:10.1088/1361-6560/aada6d
摘要

To enable magnetic resonance (MR)-only radiotherapy and facilitate modelling of radiation attenuation in humans, synthetic CT (sCT) images need to be generated. Considering the application of MR-guided radiotherapy and online adaptive replanning, sCT generation should occur within minutes. This work aims at assessing whether an existing deep learning network can rapidly generate sCT images for accurate MR-based dose calculations in the entire pelvis. A study was conducted on data of 91 patients with prostate (59), rectal (18) and cervical (14) cancer who underwent external beam radiotherapy acquiring both CT and MRI for patients' simulation. Dixon reconstructed water, fat and in-phase images obtained from a conventional dual gradient-recalled echo sequence were used to generate sCT images. A conditional generative adversarial network (cGAN) was trained in a paired fashion on 2D transverse slices of 32 prostate cancer patients. The trained network was tested on the remaining patients to generate sCT images. For 30 patients in the test set, dose recalculations of the clinical plan were performed on sCT images. Dose distributions were evaluated comparing voxel-based dose differences, gamma and dose-volume histogram (DVH) analysis. The sCT generation required 5.6 s and 21 s for a single patient volume on a GPU and CPU, respectively. On average, sCT images resulted in a higher dose to the target of maximum 0.3%. The average gamma pass rates using the 3%, 3 mm and 2%, 2 mm criteria were above 97 and 91%, respectively, for all volumes of interests considered. All DVH points calculated on sCT differed less than ±2.5% from the corresponding points on CT. Results suggest that accurate MR-based dose calculation using sCT images generated with a cGAN trained on prostate cancer patients is feasible for the entire pelvis. The sCT generation was sufficiently fast for integration in an MR-guided radiotherapy workflow.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wonder123完成签到,获得积分10
2秒前
陈晓明关注了科研通微信公众号
3秒前
云轰2857完成签到,获得积分20
4秒前
搜集达人应助黄绪林采纳,获得10
5秒前
6秒前
CodeCraft应助Ollm采纳,获得10
9秒前
Jonathan完成签到,获得积分10
9秒前
hahahan完成签到 ,获得积分10
9秒前
11秒前
Aobo发布了新的文献求助10
11秒前
Owen应助小年小少采纳,获得10
11秒前
13秒前
Mogao完成签到,获得积分20
15秒前
16秒前
dabao完成签到,获得积分10
17秒前
17秒前
18秒前
陈晓明发布了新的文献求助20
18秒前
Bella发布了新的文献求助10
19秒前
19秒前
TiY发布了新的文献求助10
20秒前
健康发布了新的文献求助10
20秒前
充电宝应助Cindy采纳,获得10
22秒前
George完成签到,获得积分10
23秒前
钮祜禄萱完成签到 ,获得积分10
24秒前
云轰2857发布了新的文献求助10
24秒前
William_l_c完成签到,获得积分10
25秒前
涵涵涵hh完成签到 ,获得积分10
35秒前
坚强觅珍完成签到 ,获得积分10
35秒前
夏郁完成签到 ,获得积分10
36秒前
汤汤完成签到 ,获得积分10
36秒前
彼翎完成签到,获得积分10
36秒前
风起云涌完成签到,获得积分10
39秒前
40秒前
啥文献找不到完成签到 ,获得积分10
45秒前
英姑应助单薄青亦采纳,获得10
48秒前
DrSong完成签到,获得积分10
49秒前
domingo完成签到,获得积分10
52秒前
Jasper应助小丸子采纳,获得10
53秒前
TiY完成签到,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611827
求助须知:如何正确求助?哪些是违规求助? 4695978
关于积分的说明 14890007
捐赠科研通 4727175
什么是DOI,文献DOI怎么找? 2545923
邀请新用户注册赠送积分活动 1510337
关于科研通互助平台的介绍 1473236