Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy

计算机科学 人工智能 放射治疗计划 成像体模 算法
作者
Matteo Maspero,Mark H. F. Savenije,Anna M. Dinkla,Peter R. Seevinck,Martijn Intven,Ina M. Jürgenliemk-Schulz,Linda G W Kerkmeijer,Cornelis A. T. van den Berg
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:63 (18): 185001-185001 被引量:132
标识
DOI:10.1088/1361-6560/aada6d
摘要

To enable magnetic resonance (MR)-only radiotherapy and facilitate modelling of radiation attenuation in humans, synthetic CT (sCT) images need to be generated. Considering the application of MR-guided radiotherapy and online adaptive replanning, sCT generation should occur within minutes. This work aims at assessing whether an existing deep learning network can rapidly generate sCT images for accurate MR-based dose calculations in the entire pelvis. A study was conducted on data of 91 patients with prostate (59), rectal (18) and cervical (14) cancer who underwent external beam radiotherapy acquiring both CT and MRI for patients' simulation. Dixon reconstructed water, fat and in-phase images obtained from a conventional dual gradient-recalled echo sequence were used to generate sCT images. A conditional generative adversarial network (cGAN) was trained in a paired fashion on 2D transverse slices of 32 prostate cancer patients. The trained network was tested on the remaining patients to generate sCT images. For 30 patients in the test set, dose recalculations of the clinical plan were performed on sCT images. Dose distributions were evaluated comparing voxel-based dose differences, gamma and dose-volume histogram (DVH) analysis. The sCT generation required 5.6 s and 21 s for a single patient volume on a GPU and CPU, respectively. On average, sCT images resulted in a higher dose to the target of maximum 0.3%. The average gamma pass rates using the 3%, 3 mm and 2%, 2 mm criteria were above 97 and 91%, respectively, for all volumes of interests considered. All DVH points calculated on sCT differed less than ±2.5% from the corresponding points on CT. Results suggest that accurate MR-based dose calculation using sCT images generated with a cGAN trained on prostate cancer patients is feasible for the entire pelvis. The sCT generation was sufficiently fast for integration in an MR-guided radiotherapy workflow.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GGBond完成签到,获得积分10
刚刚
机智咖啡豆完成签到 ,获得积分10
刚刚
刚刚
早早发布了新的文献求助10
刚刚
科研王发布了新的文献求助10
1秒前
1秒前
NexusExplorer应助stzzyuan采纳,获得10
1秒前
2秒前
慎独完成签到 ,获得积分10
2秒前
天真台灯发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
万海发布了新的文献求助10
4秒前
4秒前
落后安容完成签到,获得积分20
4秒前
秋林完成签到,获得积分10
5秒前
5秒前
ljw完成签到 ,获得积分10
5秒前
Deposit发布了新的文献求助10
6秒前
秋林发布了新的文献求助10
7秒前
7秒前
刘卿婷发布了新的文献求助10
8秒前
9秒前
缥缈的玉米完成签到,获得积分10
9秒前
hhhhhhhhhh发布了新的文献求助10
9秒前
RE完成签到 ,获得积分10
10秒前
10秒前
小马甲应助wuxunxun2015采纳,获得10
10秒前
小马甲应助Erueka采纳,获得10
11秒前
俏皮行云完成签到 ,获得积分10
11秒前
12秒前
12秒前
jin发布了新的文献求助30
12秒前
MRen_YY发布了新的文献求助10
13秒前
开心听露完成签到,获得积分10
13秒前
13秒前
群木成林完成签到,获得积分10
13秒前
14秒前
yf完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646269
求助须知:如何正确求助?哪些是违规求助? 4770756
关于积分的说明 15034169
捐赠科研通 4805036
什么是DOI,文献DOI怎么找? 2569371
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812