Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy

计算机科学 人工智能 放射治疗计划 成像体模 算法
作者
Matteo Maspero,Mark H. F. Savenije,Anna M. Dinkla,Peter R. Seevinck,Martijn Intven,Ina M. Jürgenliemk-Schulz,Linda G W Kerkmeijer,Cornelis A. T. van den Berg
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:63 (18): 185001-185001 被引量:132
标识
DOI:10.1088/1361-6560/aada6d
摘要

To enable magnetic resonance (MR)-only radiotherapy and facilitate modelling of radiation attenuation in humans, synthetic CT (sCT) images need to be generated. Considering the application of MR-guided radiotherapy and online adaptive replanning, sCT generation should occur within minutes. This work aims at assessing whether an existing deep learning network can rapidly generate sCT images for accurate MR-based dose calculations in the entire pelvis. A study was conducted on data of 91 patients with prostate (59), rectal (18) and cervical (14) cancer who underwent external beam radiotherapy acquiring both CT and MRI for patients' simulation. Dixon reconstructed water, fat and in-phase images obtained from a conventional dual gradient-recalled echo sequence were used to generate sCT images. A conditional generative adversarial network (cGAN) was trained in a paired fashion on 2D transverse slices of 32 prostate cancer patients. The trained network was tested on the remaining patients to generate sCT images. For 30 patients in the test set, dose recalculations of the clinical plan were performed on sCT images. Dose distributions were evaluated comparing voxel-based dose differences, gamma and dose-volume histogram (DVH) analysis. The sCT generation required 5.6 s and 21 s for a single patient volume on a GPU and CPU, respectively. On average, sCT images resulted in a higher dose to the target of maximum 0.3%. The average gamma pass rates using the 3%, 3 mm and 2%, 2 mm criteria were above 97 and 91%, respectively, for all volumes of interests considered. All DVH points calculated on sCT differed less than ±2.5% from the corresponding points on CT. Results suggest that accurate MR-based dose calculation using sCT images generated with a cGAN trained on prostate cancer patients is feasible for the entire pelvis. The sCT generation was sufficiently fast for integration in an MR-guided radiotherapy workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助无心的钢铁侠采纳,获得10
刚刚
18781913856完成签到 ,获得积分10
1秒前
傲娇问晴完成签到,获得积分10
2秒前
lpk发布了新的文献求助10
3秒前
微丶尘发布了新的文献求助10
4秒前
七里香完成签到,获得积分10
8秒前
LL完成签到,获得积分10
9秒前
鲤鱼酸奶发布了新的文献求助10
9秒前
11秒前
阿曾完成签到 ,获得积分10
11秒前
11秒前
12秒前
坦率灵槐发布了新的文献求助10
12秒前
Akim应助狗蛋儿真棒棒采纳,获得10
12秒前
俭朴尔白应助Wangyingjie5采纳,获得10
12秒前
14秒前
14秒前
15秒前
16秒前
16秒前
个性的智宸完成签到,获得积分10
16秒前
斯文败类应助停云采纳,获得30
16秒前
合法的天空完成签到 ,获得积分10
16秒前
16秒前
Yue完成签到 ,获得积分10
17秒前
18秒前
风雨霖霖发布了新的文献求助10
19秒前
cdercder发布了新的文献求助30
19秒前
20秒前
甜甜耶耶发布了新的文献求助10
20秒前
烧烤发布了新的文献求助10
21秒前
21秒前
L353052833发布了新的文献求助10
22秒前
天子山村的希望完成签到 ,获得积分10
22秒前
鲤鱼酸奶完成签到,获得积分10
23秒前
23秒前
sujingbo发布了新的文献求助10
24秒前
24秒前
24秒前
Kaen发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458048
求助须知:如何正确求助?哪些是违规求助? 4564233
关于积分的说明 14294126
捐赠科研通 4489016
什么是DOI,文献DOI怎么找? 2458832
邀请新用户注册赠送积分活动 1448759
关于科研通互助平台的介绍 1424403