Revisiting User Mobility and Social Relationships in LBSNs: A Hypergraph Embedding Approach

社交网络(社会语言学) 图形
作者
Dingqi Yang,Bingqing Qu,Jie Yang,Philippe Cudré-Mauroux
出处
期刊:The Web Conference 卷期号:: 2147-2157 被引量:96
标识
DOI:10.1145/3308558.3313635
摘要

Location Based Social Networks (LBSNs) have been widely used as a primary data source to study the impact of mobility and social relationships on each other. Traditional approaches manually define features to characterize users' mobility homophily and social proximity, and show that mobility and social features can help friendship and location prediction tasks, respectively. However, these hand-crafted features not only require tedious human efforts, but also are difficult to generalize. In this paper, by revisiting user mobility and social relationships based on a large-scale LBSN dataset collected over a long-term period, we propose LBSN2Vec, a hypergraph embedding approach designed specifically for LBSN data for automatic feature learning. Specifically, LBSN data intrinsically forms a hypergraph including both user-user edges (friendships) and user-time-POI-semantic hyperedges (check-ins). Based on this hypergraph, we first propose a random-walk-with-stay scheme to jointly sample user check-ins and social relationships, and then learn node embeddings from the sampled (hyper)edges by preserving n-wise node proximity (n = 2 or 4). Our evaluation results show that LBSN2Vec both consistently and significantly outperforms the state-of-the-art graph embedding methods on both friendship and location prediction tasks, with an average improvement of 32.95% and 25.32%, respectively. Moreover, using LBSN2Vec, we discover the asymmetric impact of mobility and social relationships on predicting each other, which can serve as guidelines for future research on friendship and location prediction in LBSNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pp完成签到 ,获得积分0
刚刚
zhangjianzeng完成签到 ,获得积分10
刚刚
史小菜应助云轩采纳,获得20
1秒前
伏伏雅逸发布了新的文献求助10
1秒前
李健应助荒野风采纳,获得10
2秒前
Popeye应助单纯血茗采纳,获得10
2秒前
淡然冬灵发布了新的文献求助10
2秒前
Popeye应助单纯血茗采纳,获得10
2秒前
荔枝的油饼iKun完成签到,获得积分10
3秒前
Bosen完成签到,获得积分10
3秒前
Astraeus完成签到 ,获得积分10
4秒前
fengyuenanche完成签到,获得积分10
5秒前
五虎完成签到,获得积分10
6秒前
Akim应助Rollei采纳,获得10
7秒前
hoshi1018完成签到,获得积分10
8秒前
友好曲奇完成签到,获得积分10
8秒前
dongdong完成签到 ,获得积分10
9秒前
CR7完成签到,获得积分0
10秒前
左丘忻完成签到,获得积分10
10秒前
凤迎雪飘完成签到,获得积分10
10秒前
10秒前
FashionBoy应助云轩采纳,获得10
11秒前
领导范儿应助伏伏雅逸采纳,获得10
11秒前
12秒前
Rondab应助悦耳荟采纳,获得10
12秒前
liqian完成签到,获得积分10
12秒前
易安发布了新的文献求助100
13秒前
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
cdh1994应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
沉默的谷秋完成签到,获得积分10
14秒前
大个应助科研通管家采纳,获得10
14秒前
过时的热狗完成签到,获得积分10
15秒前
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048