Revisiting User Mobility and Social Relationships in LBSNs: A Hypergraph Embedding Approach

社交网络(社会语言学) 图形
作者
Dingqi Yang,Bingqing Qu,Jie Yang,Philippe Cudré-Mauroux
出处
期刊:The Web Conference 卷期号:: 2147-2157 被引量:96
标识
DOI:10.1145/3308558.3313635
摘要

Location Based Social Networks (LBSNs) have been widely used as a primary data source to study the impact of mobility and social relationships on each other. Traditional approaches manually define features to characterize users' mobility homophily and social proximity, and show that mobility and social features can help friendship and location prediction tasks, respectively. However, these hand-crafted features not only require tedious human efforts, but also are difficult to generalize. In this paper, by revisiting user mobility and social relationships based on a large-scale LBSN dataset collected over a long-term period, we propose LBSN2Vec, a hypergraph embedding approach designed specifically for LBSN data for automatic feature learning. Specifically, LBSN data intrinsically forms a hypergraph including both user-user edges (friendships) and user-time-POI-semantic hyperedges (check-ins). Based on this hypergraph, we first propose a random-walk-with-stay scheme to jointly sample user check-ins and social relationships, and then learn node embeddings from the sampled (hyper)edges by preserving n-wise node proximity (n = 2 or 4). Our evaluation results show that LBSN2Vec both consistently and significantly outperforms the state-of-the-art graph embedding methods on both friendship and location prediction tasks, with an average improvement of 32.95% and 25.32%, respectively. Moreover, using LBSN2Vec, we discover the asymmetric impact of mobility and social relationships on predicting each other, which can serve as guidelines for future research on friendship and location prediction in LBSNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
芭乐完成签到,获得积分10
1秒前
w1完成签到,获得积分10
1秒前
冷酷云朵应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
Eco发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
4秒前
4秒前
摸猪头发布了新的文献求助10
5秒前
呼呼呼完成签到,获得积分10
5秒前
善学以致用应助我啊采纳,获得20
5秒前
6秒前
6秒前
6秒前
美满电灯胆完成签到 ,获得积分10
6秒前
malubest完成签到,获得积分10
7秒前
7秒前
8秒前
CDY完成签到,获得积分10
8秒前
8秒前
Freja发布了新的文献求助30
8秒前
orixero应助geold采纳,获得10
8秒前
9秒前
爆米花应助cookie采纳,获得10
10秒前
Joyi完成签到 ,获得积分10
11秒前
爱吃QQ糖完成签到,获得积分20
11秒前
Ge发布了新的文献求助10
11秒前
12秒前
小马甲应助望都采纳,获得10
12秒前
blackcatcaptain完成签到,获得积分20
13秒前
13秒前
13秒前
哈哈哈完成签到,获得积分20
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148410
求助须知:如何正确求助?哪些是违规求助? 2799502
关于积分的说明 7835226
捐赠科研通 2456813
什么是DOI,文献DOI怎么找? 1307424
科研通“疑难数据库(出版商)”最低求助积分说明 628189
版权声明 601655