Revisiting User Mobility and Social Relationships in LBSNs: A Hypergraph Embedding Approach

社交网络(社会语言学) 图形
作者
Dingqi Yang,Bingqing Qu,Jie Yang,Philippe Cudré-Mauroux
出处
期刊:The Web Conference 卷期号:: 2147-2157 被引量:96
标识
DOI:10.1145/3308558.3313635
摘要

Location Based Social Networks (LBSNs) have been widely used as a primary data source to study the impact of mobility and social relationships on each other. Traditional approaches manually define features to characterize users' mobility homophily and social proximity, and show that mobility and social features can help friendship and location prediction tasks, respectively. However, these hand-crafted features not only require tedious human efforts, but also are difficult to generalize. In this paper, by revisiting user mobility and social relationships based on a large-scale LBSN dataset collected over a long-term period, we propose LBSN2Vec, a hypergraph embedding approach designed specifically for LBSN data for automatic feature learning. Specifically, LBSN data intrinsically forms a hypergraph including both user-user edges (friendships) and user-time-POI-semantic hyperedges (check-ins). Based on this hypergraph, we first propose a random-walk-with-stay scheme to jointly sample user check-ins and social relationships, and then learn node embeddings from the sampled (hyper)edges by preserving n-wise node proximity (n = 2 or 4). Our evaluation results show that LBSN2Vec both consistently and significantly outperforms the state-of-the-art graph embedding methods on both friendship and location prediction tasks, with an average improvement of 32.95% and 25.32%, respectively. Moreover, using LBSN2Vec, we discover the asymmetric impact of mobility and social relationships on predicting each other, which can serve as guidelines for future research on friendship and location prediction in LBSNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三川发布了新的文献求助10
刚刚
刚刚
爆米花应助過客采纳,获得10
刚刚
1秒前
1秒前
Kannan发布了新的文献求助10
1秒前
2秒前
六一发布了新的文献求助10
2秒前
2秒前
3秒前
xqq发布了新的文献求助10
4秒前
daguan完成签到,获得积分10
4秒前
5秒前
聪明皮带发布了新的文献求助10
6秒前
6秒前
6秒前
hf发布了新的文献求助10
6秒前
upupup发布了新的文献求助10
7秒前
7秒前
笑得开心完成签到,获得积分10
7秒前
7秒前
狐子完成签到,获得积分10
7秒前
无我发布了新的文献求助10
8秒前
JIAO完成签到,获得积分10
9秒前
三川完成签到,获得积分10
10秒前
10秒前
cbp560完成签到,获得积分10
10秒前
安全平静发布了新的文献求助10
10秒前
xqq完成签到,获得积分10
10秒前
隐形的冰海完成签到,获得积分10
11秒前
12秒前
lei发布了新的文献求助10
12秒前
13秒前
遇上就这样吧应助newplayer采纳,获得50
13秒前
万能图书馆应助hym采纳,获得10
13秒前
凉风送信发布了新的文献求助10
14秒前
14秒前
CodeCraft应助sunyanghu369采纳,获得10
14秒前
852应助Dotayue7采纳,获得10
15秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558489
求助须知:如何正确求助?哪些是违规求助? 3985507
关于积分的说明 12338928
捐赠科研通 3655887
什么是DOI,文献DOI怎么找? 2014038
邀请新用户注册赠送积分活动 1048872
科研通“疑难数据库(出版商)”最低求助积分说明 937242