Multi-task learning of a deep k-nearest neighbour network for histopathological image classification and retrieval

可解释性 计算机科学 人工智能 深度学习 机器学习 模式识别(心理学) 散列函数 上下文图像分类 人工神经网络 k-最近邻算法 任务(项目管理) 图像(数学) 数据挖掘 计算机安全 经济 管理
作者
Tingying Peng,Melanie Boxberg,Wilko Weichert,Nassir Navab,Carsten Marr
标识
DOI:10.1101/661454
摘要

Abstract Deep neural networks have achieved tremendous success in image recognition, classification and object detection. However, deep learning is often criticised for its lack of transparency and general inability to rationalize its predictions. The issue of poor model interpretability becomes critical in medical applications, as a model that is not understood and trusted by physicians is unlikely to be used in daily clinical practice. In this work, we develop a novel multi-task deep learning framework for simultaneous histopathology image classification and retrieval, leveraging on the classic concept of k-nearest neighbors to improve model interpretability. For a test image, we retrieve the most similar images from our training databases. These retrieved nearest neighbours can be used to classify the test image with a confidence score, and provide a human-interpretable explanation of our classification. Our original framework can be built on top of any existing classification network (and therefore benefit from pretrained models), by (i) adding a triplet loss function with a novel triplet sampling strategy to compare distances between samples and (ii) a Cauchy hashing loss function to accelerate neighbour searching. We evaluate our method on colorectal cancer histology slides, and show that the confidence estimates are strongly correlated with model performance. The explanations provided by nearest neighbors are intuitive and useful for expert evaluation by giving insights into understanding possible model failures, and can support clinical decision making by comparing archived images and patient records with the actual case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anan发布了新的文献求助10
刚刚
刚刚
1秒前
Evangeline完成签到 ,获得积分10
1秒前
2秒前
辛慧完成签到,获得积分10
2秒前
4秒前
小雨发布了新的文献求助10
4秒前
华桦子完成签到,获得积分10
4秒前
ty发布了新的文献求助10
4秒前
别太可爱发布了新的文献求助10
5秒前
yuchen完成签到,获得积分10
5秒前
慕青应助莹仔采纳,获得10
6秒前
雁回发布了新的文献求助10
7秒前
正函数发布了新的文献求助10
7秒前
7秒前
lzh完成签到,获得积分10
7秒前
8秒前
斯文败类应助问下他采纳,获得10
9秒前
9秒前
小张发布了新的文献求助10
9秒前
10秒前
Nelson完成签到,获得积分20
10秒前
10秒前
库昊的假粉丝应助Frank采纳,获得30
11秒前
qin希望应助桎梏QAQ采纳,获得10
11秒前
maizai完成签到,获得积分10
11秒前
12秒前
小蘑菇应助欣欣采纳,获得10
12秒前
小慕斯发布了新的文献求助10
12秒前
不将道理发布了新的文献求助10
13秒前
13秒前
送外卖了完成签到,获得积分10
14秒前
迟原发布了新的文献求助10
15秒前
未来可期发布了新的文献求助10
16秒前
maizai发布了新的文献求助10
16秒前
科研通AI2S应助新明采纳,获得10
17秒前
ark861023发布了新的文献求助10
17秒前
华桦子发布了新的文献求助10
18秒前
18秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227802
求助须知:如何正确求助?哪些是违规求助? 2875741
关于积分的说明 8192365
捐赠科研通 2542879
什么是DOI,文献DOI怎么找? 1373241
科研通“疑难数据库(出版商)”最低求助积分说明 646713
邀请新用户注册赠送积分活动 621181