Multi-task learning of a deep k-nearest neighbour network for histopathological image classification and retrieval

可解释性 计算机科学 人工智能 深度学习 机器学习 模式识别(心理学) 散列函数 上下文图像分类 人工神经网络 k-最近邻算法 任务(项目管理) 图像(数学) 数据挖掘 计算机安全 管理 经济
作者
Tingying Peng,Melanie Boxberg,Wilko Weichert,Nassir Navab,Carsten Marr
标识
DOI:10.1101/661454
摘要

Abstract Deep neural networks have achieved tremendous success in image recognition, classification and object detection. However, deep learning is often criticised for its lack of transparency and general inability to rationalize its predictions. The issue of poor model interpretability becomes critical in medical applications, as a model that is not understood and trusted by physicians is unlikely to be used in daily clinical practice. In this work, we develop a novel multi-task deep learning framework for simultaneous histopathology image classification and retrieval, leveraging on the classic concept of k-nearest neighbors to improve model interpretability. For a test image, we retrieve the most similar images from our training databases. These retrieved nearest neighbours can be used to classify the test image with a confidence score, and provide a human-interpretable explanation of our classification. Our original framework can be built on top of any existing classification network (and therefore benefit from pretrained models), by (i) adding a triplet loss function with a novel triplet sampling strategy to compare distances between samples and (ii) a Cauchy hashing loss function to accelerate neighbour searching. We evaluate our method on colorectal cancer histology slides, and show that the confidence estimates are strongly correlated with model performance. The explanations provided by nearest neighbors are intuitive and useful for expert evaluation by giving insights into understanding possible model failures, and can support clinical decision making by comparing archived images and patient records with the actual case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
tdtk发布了新的文献求助20
1秒前
WuzJ1ee完成签到,获得积分20
1秒前
科研通AI6应助追寻的宛er采纳,获得10
1秒前
2秒前
储物间完成签到,获得积分10
2秒前
2秒前
hdbys发布了新的文献求助30
2秒前
2秒前
RNNNLL完成签到,获得积分10
3秒前
5秒前
5秒前
5秒前
长夜变清早完成签到,获得积分10
5秒前
5秒前
zgd发布了新的文献求助10
5秒前
在水一方应助sos采纳,获得10
5秒前
嘻嘻发布了新的文献求助10
5秒前
谷雨秋发布了新的文献求助10
8秒前
8秒前
任性的梦菲完成签到,获得积分10
9秒前
10秒前
今后应助张雯雯采纳,获得10
10秒前
量子星尘发布了新的文献求助80
11秒前
Ai77发布了新的文献求助10
11秒前
Sallxy发布了新的文献求助10
11秒前
Dormantparner发布了新的文献求助10
11秒前
12秒前
KouZL发布了新的文献求助30
12秒前
科研通AI6应助满家归寻采纳,获得10
12秒前
13秒前
一口气吃七碗饭完成签到 ,获得积分10
13秒前
13秒前
14秒前
科研通AI6应助朴实涵菡采纳,获得10
14秒前
14秒前
小马甲应助坚定茉莉采纳,获得10
15秒前
疯狂的晓山完成签到,获得积分10
15秒前
fanqinge完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871