Improving Knowledge-aware Recommendation with Multi-level Interactive Contrastive Learning

计算机科学 人工智能 图形 机器学习 自然语言处理 理论计算机科学
作者
Ding Zou,Wei Wei,Ziyang Wang,Xian-Ling Mao,Feida Zhu,Rui Fang,Dangyang Chen
标识
DOI:10.1145/3511808.3557358
摘要

Incorporating Knowledge Graphs (KG) into recommeder system as side information has attracted considerable attention. Recently, the technical trend of Knowledge-aware Recommendation (KGR) is to develop end-to-end models based on graph neural networks (GNNs). However, the extremely sparse user-item interactions significantly degrade the performance of the GNN-based models, from the following aspects: 1) the sparse interaction, itself, means inadequate supervision signals and limits the supervised GNN-based models; 2) the combination of sparse interactions (CF part) and redundant KG facts (KG part) further results in an unbalanced information utilization. Besides, the GNN paradigm aggregates local neighbors for node representation learning, while ignoring the non-local KG facts and making the knowledge extraction insufficient. Inspired by the recent success of contrastive learning in mining supervised signals from data itself, in this paper, we focus on exploring contrastive learning in KGR and propose a novel multi-level interactive contrastive learning mechanism, to alleviate the aforementioned challenges. Different from traditional contrastive learning methods which contrast nodes of two generated graph views, interactive contrastive mechanism conducts layer-wise self-supervised learning by contrasting layers of different parts within graphs, which is also an "interaction" action. Specifically, we first construct local and non-local graphs for user/item in KG, exploring more KG facts for KGR. Then an intra-graph level interactive contrastive learning is performed within each local/non-local graph, which contrasts layers of the CF and KG parts, for more consistent information leveraging. Besides, an inter-graph level interactive contrastive learning is performed between the local and non-local graphs, for sufficiently and coherently extracting non-local KG signals. Extensive experiments conducted on three benchmark datasets show the superior performance of our proposed method over the state-of-the-arts. The implementations are available at: https://github.com/CCIIPLab/KGIC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
4秒前
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
好好应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
好好应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
好好应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
dew应助科研通管家采纳,获得50
6秒前
FU发布了新的文献求助10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
好好应助科研通管家采纳,获得10
7秒前
xu应助科研通管家采纳,获得10
7秒前
风清扬应助科研通管家采纳,获得30
7秒前
浮游应助科研通管家采纳,获得10
7秒前
8秒前
路人发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716