已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving Knowledge-aware Recommendation with Multi-level Interactive Contrastive Learning

计算机科学 人工智能 图形 机器学习 自然语言处理 理论计算机科学
作者
Ding Zou,Wei Wei,Ziyang Wang,Xian-Ling Mao,Feida Zhu,Rui Fang,Dangyang Chen
标识
DOI:10.1145/3511808.3557358
摘要

Incorporating Knowledge Graphs (KG) into recommeder system as side information has attracted considerable attention. Recently, the technical trend of Knowledge-aware Recommendation (KGR) is to develop end-to-end models based on graph neural networks (GNNs). However, the extremely sparse user-item interactions significantly degrade the performance of the GNN-based models, from the following aspects: 1) the sparse interaction, itself, means inadequate supervision signals and limits the supervised GNN-based models; 2) the combination of sparse interactions (CF part) and redundant KG facts (KG part) further results in an unbalanced information utilization. Besides, the GNN paradigm aggregates local neighbors for node representation learning, while ignoring the non-local KG facts and making the knowledge extraction insufficient. Inspired by the recent success of contrastive learning in mining supervised signals from data itself, in this paper, we focus on exploring contrastive learning in KGR and propose a novel multi-level interactive contrastive learning mechanism, to alleviate the aforementioned challenges. Different from traditional contrastive learning methods which contrast nodes of two generated graph views, interactive contrastive mechanism conducts layer-wise self-supervised learning by contrasting layers of different parts within graphs, which is also an "interaction" action. Specifically, we first construct local and non-local graphs for user/item in KG, exploring more KG facts for KGR. Then an intra-graph level interactive contrastive learning is performed within each local/non-local graph, which contrasts layers of the CF and KG parts, for more consistent information leveraging. Besides, an inter-graph level interactive contrastive learning is performed between the local and non-local graphs, for sufficiently and coherently extracting non-local KG signals. Extensive experiments conducted on three benchmark datasets show the superior performance of our proposed method over the state-of-the-arts. The implementations are available at: https://github.com/CCIIPLab/KGIC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zenia完成签到,获得积分20
1秒前
Elsia发布了新的文献求助10
1秒前
NexusExplorer应助张志超采纳,获得10
4秒前
风趣的芒果完成签到,获得积分10
4秒前
wch666发布了新的文献求助10
5秒前
5秒前
6秒前
lvlv完成签到,获得积分10
6秒前
Echo完成签到,获得积分10
7秒前
CSX完成签到 ,获得积分10
11秒前
orixero应助wch666采纳,获得10
12秒前
佳洛父亲发布了新的文献求助10
13秒前
反恐分子应助科研通管家采纳,获得10
13秒前
yyds应助科研通管家采纳,获得150
14秒前
qing应助科研通管家采纳,获得50
14秒前
qing应助科研通管家采纳,获得10
14秒前
zsmj23完成签到 ,获得积分0
15秒前
贪玩的映雁完成签到,获得积分10
20秒前
佳洛父亲完成签到,获得积分10
21秒前
dadabad完成签到 ,获得积分10
21秒前
天才玩家H完成签到,获得积分10
23秒前
23秒前
Sherry815完成签到,获得积分10
25秒前
25秒前
酒酿是也完成签到 ,获得积分10
26秒前
专注鹤发布了新的文献求助10
28秒前
lalala完成签到,获得积分10
29秒前
32秒前
34秒前
cc完成签到 ,获得积分10
34秒前
GKPFT完成签到,获得积分10
36秒前
渴望者发布了新的文献求助10
38秒前
海绵宝宝完成签到 ,获得积分10
40秒前
小迷糊完成签到 ,获得积分10
41秒前
fhg完成签到 ,获得积分10
42秒前
自由的云朵完成签到 ,获得积分10
43秒前
abc完成签到 ,获得积分10
44秒前
自信的橘子完成签到,获得积分10
48秒前
皮皮应助雨之夏日采纳,获得50
51秒前
传奇3应助迷路的成风采纳,获得10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606500
求助须知:如何正确求助?哪些是违规求助? 4690888
关于积分的说明 14866511
捐赠科研通 4706081
什么是DOI,文献DOI怎么找? 2542717
邀请新用户注册赠送积分活动 1508129
关于科研通互助平台的介绍 1472276