Improving Knowledge-aware Recommendation with Multi-level Interactive Contrastive Learning

计算机科学 人工智能 图形 机器学习 自然语言处理 理论计算机科学
作者
Ding Zou,Wei Wei,Ziyang Wang,Xian-Ling Mao,Feida Zhu,Rui Fang,Dangyang Chen
标识
DOI:10.1145/3511808.3557358
摘要

Incorporating Knowledge Graphs (KG) into recommeder system as side information has attracted considerable attention. Recently, the technical trend of Knowledge-aware Recommendation (KGR) is to develop end-to-end models based on graph neural networks (GNNs). However, the extremely sparse user-item interactions significantly degrade the performance of the GNN-based models, from the following aspects: 1) the sparse interaction, itself, means inadequate supervision signals and limits the supervised GNN-based models; 2) the combination of sparse interactions (CF part) and redundant KG facts (KG part) further results in an unbalanced information utilization. Besides, the GNN paradigm aggregates local neighbors for node representation learning, while ignoring the non-local KG facts and making the knowledge extraction insufficient. Inspired by the recent success of contrastive learning in mining supervised signals from data itself, in this paper, we focus on exploring contrastive learning in KGR and propose a novel multi-level interactive contrastive learning mechanism, to alleviate the aforementioned challenges. Different from traditional contrastive learning methods which contrast nodes of two generated graph views, interactive contrastive mechanism conducts layer-wise self-supervised learning by contrasting layers of different parts within graphs, which is also an "interaction" action. Specifically, we first construct local and non-local graphs for user/item in KG, exploring more KG facts for KGR. Then an intra-graph level interactive contrastive learning is performed within each local/non-local graph, which contrasts layers of the CF and KG parts, for more consistent information leveraging. Besides, an inter-graph level interactive contrastive learning is performed between the local and non-local graphs, for sufficiently and coherently extracting non-local KG signals. Extensive experiments conducted on three benchmark datasets show the superior performance of our proposed method over the state-of-the-arts. The implementations are available at: https://github.com/CCIIPLab/KGIC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
汉堡包应助llt采纳,获得10
1秒前
机灵柚子应助kll采纳,获得10
1秒前
2秒前
2秒前
今后应助67n采纳,获得10
3秒前
Yan发布了新的文献求助10
3秒前
3秒前
4秒前
zzwwill完成签到,获得积分10
4秒前
小马哥发布了新的文献求助10
5秒前
CipherSage应助孙友浩采纳,获得10
5秒前
sssss发布了新的文献求助30
5秒前
6秒前
朴实乐天完成签到,获得积分10
6秒前
7秒前
完美世界应助难过云朵采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
lllll发布了新的文献求助10
8秒前
离殇发布了新的文献求助20
9秒前
大圣完成签到 ,获得积分10
9秒前
10秒前
科研通AI6.1应助飞飞采纳,获得10
10秒前
卡皮巴拉发布了新的文献求助10
10秒前
连秋完成签到,获得积分10
10秒前
10秒前
麦米米发布了新的文献求助10
10秒前
11秒前
含蓄半雪发布了新的文献求助10
12秒前
小二郎应助yayaha采纳,获得10
13秒前
土豪的念梦完成签到,获得积分10
13秒前
赘婿应助feifei采纳,获得10
14秒前
陈明健发布了新的文献求助10
14秒前
852应助熊若宇采纳,获得10
15秒前
1223完成签到,获得积分10
15秒前
LUO发布了新的文献求助10
15秒前
中医星完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761669
求助须知:如何正确求助?哪些是违规求助? 5531072
关于积分的说明 15400289
捐赠科研通 4897942
什么是DOI,文献DOI怎么找? 2634588
邀请新用户注册赠送积分活动 1582751
关于科研通互助平台的介绍 1537985