Improving Knowledge-aware Recommendation with Multi-level Interactive Contrastive Learning

计算机科学 人工智能 图形 机器学习 自然语言处理 理论计算机科学
作者
Ding Zou,Wei Wei,Ziyang Wang,Xian-Ling Mao,Feida Zhu,Rui Fang,Dangyang Chen
标识
DOI:10.1145/3511808.3557358
摘要

Incorporating Knowledge Graphs (KG) into recommeder system as side information has attracted considerable attention. Recently, the technical trend of Knowledge-aware Recommendation (KGR) is to develop end-to-end models based on graph neural networks (GNNs). However, the extremely sparse user-item interactions significantly degrade the performance of the GNN-based models, from the following aspects: 1) the sparse interaction, itself, means inadequate supervision signals and limits the supervised GNN-based models; 2) the combination of sparse interactions (CF part) and redundant KG facts (KG part) further results in an unbalanced information utilization. Besides, the GNN paradigm aggregates local neighbors for node representation learning, while ignoring the non-local KG facts and making the knowledge extraction insufficient. Inspired by the recent success of contrastive learning in mining supervised signals from data itself, in this paper, we focus on exploring contrastive learning in KGR and propose a novel multi-level interactive contrastive learning mechanism, to alleviate the aforementioned challenges. Different from traditional contrastive learning methods which contrast nodes of two generated graph views, interactive contrastive mechanism conducts layer-wise self-supervised learning by contrasting layers of different parts within graphs, which is also an "interaction" action. Specifically, we first construct local and non-local graphs for user/item in KG, exploring more KG facts for KGR. Then an intra-graph level interactive contrastive learning is performed within each local/non-local graph, which contrasts layers of the CF and KG parts, for more consistent information leveraging. Besides, an inter-graph level interactive contrastive learning is performed between the local and non-local graphs, for sufficiently and coherently extracting non-local KG signals. Extensive experiments conducted on three benchmark datasets show the superior performance of our proposed method over the state-of-the-arts. The implementations are available at: https://github.com/CCIIPLab/KGIC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪白尔岚完成签到,获得积分10
刚刚
disciple完成签到,获得积分10
刚刚
权志龙完成签到,获得积分10
刚刚
颜靖仇完成签到,获得积分10
1秒前
Xiang完成签到,获得积分10
1秒前
KONG完成签到,获得积分10
1秒前
2秒前
2秒前
橘子发布了新的文献求助10
3秒前
Sss句末完成签到,获得积分10
3秒前
3秒前
科研混子发布了新的文献求助10
4秒前
4秒前
凉笙墨染完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
SYLH应助TT采纳,获得10
4秒前
小肚溜圆完成签到,获得积分10
4秒前
Hxx完成签到,获得积分10
4秒前
zjt1111111完成签到,获得积分20
5秒前
ooo完成签到,获得积分10
5秒前
wwwwwwwwww完成签到,获得积分10
5秒前
leoan完成签到,获得积分10
6秒前
啦啦鱼发布了新的文献求助10
6秒前
照九州完成签到,获得积分10
6秒前
小红完成签到,获得积分10
6秒前
滑腻腻的小鱼完成签到,获得积分20
6秒前
李解万岁完成签到,获得积分10
7秒前
zjt1111111发布了新的文献求助10
8秒前
平淡南霜完成签到,获得积分10
8秒前
五一完成签到,获得积分10
8秒前
科研工作者完成签到,获得积分10
9秒前
爱岗敬业牛马人完成签到,获得积分10
9秒前
9秒前
YiWei发布了新的文献求助10
9秒前
molotov发布了新的文献求助10
10秒前
10秒前
10秒前
zzzzzz完成签到,获得积分10
11秒前
归尘完成签到,获得积分10
11秒前
打打应助小红采纳,获得10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044