Improving Knowledge-aware Recommendation with Multi-level Interactive Contrastive Learning

计算机科学 人工智能 图形 机器学习 自然语言处理 理论计算机科学
作者
Ding Zou,Wei Wei,Ziyang Wang,Xian-Ling Mao,Feida Zhu,Rui Fang,Dangyang Chen
标识
DOI:10.1145/3511808.3557358
摘要

Incorporating Knowledge Graphs (KG) into recommeder system as side information has attracted considerable attention. Recently, the technical trend of Knowledge-aware Recommendation (KGR) is to develop end-to-end models based on graph neural networks (GNNs). However, the extremely sparse user-item interactions significantly degrade the performance of the GNN-based models, from the following aspects: 1) the sparse interaction, itself, means inadequate supervision signals and limits the supervised GNN-based models; 2) the combination of sparse interactions (CF part) and redundant KG facts (KG part) further results in an unbalanced information utilization. Besides, the GNN paradigm aggregates local neighbors for node representation learning, while ignoring the non-local KG facts and making the knowledge extraction insufficient. Inspired by the recent success of contrastive learning in mining supervised signals from data itself, in this paper, we focus on exploring contrastive learning in KGR and propose a novel multi-level interactive contrastive learning mechanism, to alleviate the aforementioned challenges. Different from traditional contrastive learning methods which contrast nodes of two generated graph views, interactive contrastive mechanism conducts layer-wise self-supervised learning by contrasting layers of different parts within graphs, which is also an "interaction" action. Specifically, we first construct local and non-local graphs for user/item in KG, exploring more KG facts for KGR. Then an intra-graph level interactive contrastive learning is performed within each local/non-local graph, which contrasts layers of the CF and KG parts, for more consistent information leveraging. Besides, an inter-graph level interactive contrastive learning is performed between the local and non-local graphs, for sufficiently and coherently extracting non-local KG signals. Extensive experiments conducted on three benchmark datasets show the superior performance of our proposed method over the state-of-the-arts. The implementations are available at: https://github.com/CCIIPLab/KGIC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丰富紫寒完成签到 ,获得积分10
刚刚
所所应助Yangzx采纳,获得10
1秒前
1秒前
盒子应助Jolene66采纳,获得10
4秒前
4秒前
火星上尔柳完成签到,获得积分10
5秒前
叽里呱啦完成签到 ,获得积分10
6秒前
拼搏的盼山完成签到,获得积分10
6秒前
8秒前
24Rabbits应助mysoul123采纳,获得10
9秒前
fasdfkgh应助wangqing采纳,获得20
11秒前
aa完成签到,获得积分10
11秒前
薛之谦完成签到,获得积分10
12秒前
太陽发布了新的文献求助10
12秒前
一橙沁城完成签到,获得积分10
14秒前
16秒前
16秒前
xiaoming完成签到,获得积分10
16秒前
jjy完成签到,获得积分10
17秒前
18秒前
21秒前
牛xiangyun发布了新的文献求助10
21秒前
大神完成签到,获得积分10
22秒前
wjw完成签到,获得积分10
22秒前
455发布了新的文献求助10
24秒前
24秒前
25秒前
鳗鱼凡波发布了新的文献求助150
25秒前
霖槿发布了新的文献求助10
26秒前
懒咩咩完成签到,获得积分10
26秒前
无私的飞鸟完成签到,获得积分10
26秒前
KWang应助听话的凡采纳,获得10
27秒前
ding应助Yangzx采纳,获得10
33秒前
牛xiangyun完成签到,获得积分10
33秒前
JamesPei应助科研通管家采纳,获得10
34秒前
CipherSage应助科研通管家采纳,获得10
34秒前
yufanhui应助科研通管家采纳,获得10
34秒前
yufanhui应助科研通管家采纳,获得20
34秒前
Hello应助科研通管家采纳,获得10
35秒前
顾矜应助科研通管家采纳,获得10
35秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053902
求助须知:如何正确求助?哪些是违规求助? 2711045
关于积分的说明 7424610
捐赠科研通 2355580
什么是DOI,文献DOI怎么找? 1247273
科研通“疑难数据库(出版商)”最低求助积分说明 606339
版权声明 596012