已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving Knowledge-aware Recommendation with Multi-level Interactive Contrastive Learning

计算机科学 人工智能 图形 机器学习 自然语言处理 理论计算机科学
作者
Ding Zou,Wei Wei,Ziyang Wang,Xian-Ling Mao,Feida Zhu,Rui Fang,Dangyang Chen
标识
DOI:10.1145/3511808.3557358
摘要

Incorporating Knowledge Graphs (KG) into recommeder system as side information has attracted considerable attention. Recently, the technical trend of Knowledge-aware Recommendation (KGR) is to develop end-to-end models based on graph neural networks (GNNs). However, the extremely sparse user-item interactions significantly degrade the performance of the GNN-based models, from the following aspects: 1) the sparse interaction, itself, means inadequate supervision signals and limits the supervised GNN-based models; 2) the combination of sparse interactions (CF part) and redundant KG facts (KG part) further results in an unbalanced information utilization. Besides, the GNN paradigm aggregates local neighbors for node representation learning, while ignoring the non-local KG facts and making the knowledge extraction insufficient. Inspired by the recent success of contrastive learning in mining supervised signals from data itself, in this paper, we focus on exploring contrastive learning in KGR and propose a novel multi-level interactive contrastive learning mechanism, to alleviate the aforementioned challenges. Different from traditional contrastive learning methods which contrast nodes of two generated graph views, interactive contrastive mechanism conducts layer-wise self-supervised learning by contrasting layers of different parts within graphs, which is also an "interaction" action. Specifically, we first construct local and non-local graphs for user/item in KG, exploring more KG facts for KGR. Then an intra-graph level interactive contrastive learning is performed within each local/non-local graph, which contrasts layers of the CF and KG parts, for more consistent information leveraging. Besides, an inter-graph level interactive contrastive learning is performed between the local and non-local graphs, for sufficiently and coherently extracting non-local KG signals. Extensive experiments conducted on three benchmark datasets show the superior performance of our proposed method over the state-of-the-arts. The implementations are available at: https://github.com/CCIIPLab/KGIC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文的慕蕊完成签到 ,获得积分10
1秒前
从心从心完成签到,获得积分10
2秒前
Owen应助失眠依珊采纳,获得10
2秒前
2秒前
蓝胖胖完成签到 ,获得积分10
3秒前
lejunia发布了新的文献求助10
4秒前
Liuyan发布了新的文献求助10
4秒前
轻松怜菡发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
木大大z完成签到,获得积分20
7秒前
7秒前
8秒前
ccm应助科研通管家采纳,获得10
10秒前
无极微光应助科研通管家采纳,获得20
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得30
11秒前
11秒前
11秒前
11秒前
忧伤的向日葵应助糖糖采纳,获得10
11秒前
李健应助杨红云采纳,获得10
11秒前
jiyang完成签到,获得积分10
11秒前
kiki发布了新的文献求助10
11秒前
沙翠风发布了新的文献求助10
12秒前
WEILAI完成签到 ,获得积分10
12秒前
邓豪完成签到 ,获得积分10
12秒前
领导范儿应助机智的凡梦采纳,获得10
12秒前
Su发布了新的文献求助10
13秒前
彭于晏应助namelorna采纳,获得10
13秒前
奔奔发布了新的文献求助10
14秒前
15秒前
15秒前
oaa完成签到,获得积分10
18秒前
沙翠风完成签到,获得积分10
21秒前
科研通AI6应助认真的白易采纳,获得10
21秒前
howky发布了新的文献求助30
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644244
求助须知:如何正确求助?哪些是违规求助? 4763257
关于积分的说明 15024274
捐赠科研通 4802455
什么是DOI,文献DOI怎么找? 2567446
邀请新用户注册赠送积分活动 1525227
关于科研通互助平台的介绍 1484666