清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Improving Knowledge-aware Recommendation with Multi-level Interactive Contrastive Learning

计算机科学 人工智能 图形 机器学习 自然语言处理 理论计算机科学
作者
Ding Zou,Wei Wei,Ziyang Wang,Xian-Ling Mao,Feida Zhu,Rui Fang,Dangyang Chen
标识
DOI:10.1145/3511808.3557358
摘要

Incorporating Knowledge Graphs (KG) into recommeder system as side information has attracted considerable attention. Recently, the technical trend of Knowledge-aware Recommendation (KGR) is to develop end-to-end models based on graph neural networks (GNNs). However, the extremely sparse user-item interactions significantly degrade the performance of the GNN-based models, from the following aspects: 1) the sparse interaction, itself, means inadequate supervision signals and limits the supervised GNN-based models; 2) the combination of sparse interactions (CF part) and redundant KG facts (KG part) further results in an unbalanced information utilization. Besides, the GNN paradigm aggregates local neighbors for node representation learning, while ignoring the non-local KG facts and making the knowledge extraction insufficient. Inspired by the recent success of contrastive learning in mining supervised signals from data itself, in this paper, we focus on exploring contrastive learning in KGR and propose a novel multi-level interactive contrastive learning mechanism, to alleviate the aforementioned challenges. Different from traditional contrastive learning methods which contrast nodes of two generated graph views, interactive contrastive mechanism conducts layer-wise self-supervised learning by contrasting layers of different parts within graphs, which is also an "interaction" action. Specifically, we first construct local and non-local graphs for user/item in KG, exploring more KG facts for KGR. Then an intra-graph level interactive contrastive learning is performed within each local/non-local graph, which contrasts layers of the CF and KG parts, for more consistent information leveraging. Besides, an inter-graph level interactive contrastive learning is performed between the local and non-local graphs, for sufficiently and coherently extracting non-local KG signals. Extensive experiments conducted on three benchmark datasets show the superior performance of our proposed method over the state-of-the-arts. The implementations are available at: https://github.com/CCIIPLab/KGIC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ccccn完成签到,获得积分10
15秒前
璐璐完成签到 ,获得积分10
21秒前
我是笨蛋完成签到 ,获得积分10
58秒前
酷波er应助科研通管家采纳,获得10
1分钟前
霸气的小土豆完成签到 ,获得积分10
1分钟前
2分钟前
1437594843完成签到 ,获得积分10
2分钟前
3分钟前
积极香菜完成签到,获得积分20
3分钟前
云朵发布了新的文献求助10
3分钟前
可爱沛蓝完成签到 ,获得积分10
3分钟前
烟花应助云朵采纳,获得10
3分钟前
aldehyde应助积极香菜采纳,获得10
3分钟前
4分钟前
wuju完成签到,获得积分10
4分钟前
咸烧白胀多了完成签到,获得积分10
4分钟前
4分钟前
FMHChan完成签到,获得积分10
5分钟前
5分钟前
发个15分的完成签到 ,获得积分10
5分钟前
11完成签到 ,获得积分10
5分钟前
Una完成签到,获得积分10
5分钟前
清脆的靖仇完成签到,获得积分10
6分钟前
7分钟前
xiaowangwang完成签到 ,获得积分10
7分钟前
无悔完成签到 ,获得积分10
7分钟前
嘻嘻哈哈应助豆丁小猫采纳,获得10
7分钟前
嘻嘻哈哈应助崴Jio辣子面采纳,获得10
8分钟前
乒坛巨人完成签到 ,获得积分0
8分钟前
李俊超完成签到 ,获得积分10
8分钟前
mzhang2完成签到 ,获得积分10
9分钟前
坚强的铅笔完成签到 ,获得积分10
9分钟前
乐正怡完成签到 ,获得积分0
9分钟前
可可完成签到 ,获得积分10
9分钟前
Jane2024完成签到,获得积分10
10分钟前
sswy完成签到 ,获得积分10
10分钟前
万能图书馆应助xun采纳,获得10
10分钟前
张wx_100完成签到,获得积分10
11分钟前
行走完成签到,获得积分10
11分钟前
aldehyde应助musicyy222采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5255489
求助须知:如何正确求助?哪些是违规求助? 4418052
关于积分的说明 13752071
捐赠科研通 4291009
什么是DOI,文献DOI怎么找? 2354636
邀请新用户注册赠送积分活动 1351147
关于科研通互助平台的介绍 1311639