Deep Learning and Smart Contract-Assisted Secure Data Sharing for IoT-Based Intelligent Agriculture

计算机科学 数据共享 智能合约 计算机安全 云计算 认证(法律) 利用 块链 医学 操作系统 病理 替代医学
作者
Randhir Kumar,Prabhat Kumar,Ahamed Aljuhani,A.K.M. Najmul Islam,Alireza Jolfaei,Sahil Garg
出处
期刊:IEEE Intelligent Systems [Institute of Electrical and Electronics Engineers]
卷期号:38 (4): 42-51 被引量:33
标识
DOI:10.1109/mis.2022.3201553
摘要

The recent development of Internet of Things (IoT) and Unmanned Aerial Vehicles has revolutionized traditional agriculture with intelligence and automation. In a typical Intelligent Agriculture (IA) ecosystem, massive and real-time data are generated, analyzed, and sent to the Cloud Server (CS) for the purpose of addressing complex agricultural issues, such as yield prediction, water feed calculation, and so on. This helps farmer and associated stakeholders to take correct decision that improves the yield and quality of agricultural product. However, the distributed nature of IA entities and the usage of insecure wireless communication open various challenges related to data sharing, monitoring, storage, and further makes the entire IA ecosystem vulnerable to various potential attacks. In this article, we exploit deep learning and smart contract to propose a new IoT-enabled IA framework for enabling secure data sharing among its various entities. Specifically, first we develop new authentication and key management scheme to ensure secure data transmission in IoT-enabled IA. The encrypted transactions are then used by the CS to analyze and further detect intrusions by a novel deep learning architecture. In CS, the smart contract (SC)-based consensus mechanism is executed on legitimate transactions that verifies and adds the formed blocks into blockchain by a peer-to-peer CSs network. In comparison to existing competing security solutions, a rigorous comparative research demonstrates that the proposed approach provides greater security and more utility characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
打打应助CQ采纳,获得10
2秒前
情怀应助11采纳,获得10
2秒前
2秒前
田様应助Young采纳,获得10
4秒前
西野发布了新的文献求助30
4秒前
5秒前
秋不落棠发布了新的文献求助10
5秒前
5秒前
5秒前
灰灰发布了新的文献求助10
6秒前
林林完成签到,获得积分20
6秒前
7秒前
量子星尘发布了新的文献求助200
8秒前
8秒前
海海发布了新的文献求助10
8秒前
8秒前
独特冰安发布了新的文献求助10
8秒前
kai完成签到,获得积分10
8秒前
张思涵完成签到,获得积分10
9秒前
SciGPT应助simon采纳,获得10
10秒前
赫连烙发布了新的文献求助10
11秒前
11秒前
11秒前
lalala发布了新的文献求助10
11秒前
wanci应助ff采纳,获得10
11秒前
柱子完成签到,获得积分10
12秒前
佳析陈关注了科研通微信公众号
13秒前
13秒前
13秒前
14秒前
14秒前
14秒前
my完成签到,获得积分10
14秒前
bkagyin应助饱满的靖易采纳,获得10
14秒前
小蘑菇应助哦哦哦采纳,获得10
14秒前
15秒前
欣喜念桃发布了新的文献求助10
15秒前
无花果应助syx采纳,获得10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970843
求助须知:如何正确求助?哪些是违规求助? 3515550
关于积分的说明 11178897
捐赠科研通 3250660
什么是DOI,文献DOI怎么找? 1795393
邀请新用户注册赠送积分活动 875828
科研通“疑难数据库(出版商)”最低求助积分说明 805188