Radiomics with Artificial Intelligence for the Prediction of Early Recurrence in Patients with Clinical Stage IA Lung Cancer

医学 接收机工作特性 阶段(地层学) 无线电技术 肺癌 外科肿瘤学 多元分析 放射科 核医学 磨玻璃样改变 切断 内科学 癌症 腺癌 古生物学 物理 生物 量子力学
作者
Yoshihisa Shimada,Yujin Kudo,Sachio Maehara,Ryosuke Amemiya,Ryuhei Masuno,Jinho Park,Norihiko Ikeda
出处
期刊:Annals of Surgical Oncology [Springer Nature]
卷期号:29 (13): 8185-8193 被引量:11
标识
DOI:10.1245/s10434-022-12516-x
摘要

We seek to explore the ability of computed tomography (CT)-based radiomics coupled with artificial intelligence (AI) to predict early recurrence (< 2 years after surgery) in patients with clinical stage 0-IA non-small cell lung cancer (c-stage 0-IA NSCLC).Data of 642 patients were collected for early recurrence and assigned to the derivation and validation cohorts at a ratio of 2:1. Using the AI software Beta Version (Fujifilm Corporation, Japan), 39 AI imaging factors, including 17 factors from the AI ground-glass nodule analysis and 22 radiomic features from nodule characterization analysis, were extracted.Multivariate analysis showed that male sex (p = 0.016), solid part size (p < 0.001), CT value standard deviation (p = 0.038), solid part volume ratio (p = 0.016), and bronchus translucency (p = 0.007) were associated with recurrence-free survival (RFS). Receiver operating characteristics analysis showed that the area under the curve and optimal cutoff values relevant to recurrence were 0.707 and 1.49 cm for solid part size, and 0.710 and 22.9% for solid part volume ratio, respectively. The 5-year RFS rates for patients in the validation set with solid part size ≤ 1.49 cm and > 1.49 cm were 92.2% and 70.4% (p < 0.001), whereas those for patients with solid part volume ratios ≤ 22.9% and > 22.9% were 97.8% and 71.7% (p < 0.001), respectively.CT-based radiomics coupled with AI contributes to the noninvasive prediction of early recurrence in patients with c-stage 0-IA NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
传奇3应助魏儒蕾采纳,获得10
1秒前
1秒前
meiwei发布了新的文献求助10
2秒前
Re发布了新的文献求助10
2秒前
coco完成签到,获得积分10
3秒前
发嗲的鸡完成签到 ,获得积分10
3秒前
3秒前
sunstar发布了新的文献求助30
4秒前
4秒前
00完成签到 ,获得积分10
5秒前
加菲丰丰举报Weiyu求助涉嫌违规
5秒前
dadadada完成签到,获得积分10
6秒前
科研通AI2S应助mayday采纳,获得10
7秒前
眼睛大鹭洋完成签到 ,获得积分10
8秒前
知识四面八方来完成签到 ,获得积分10
8秒前
ZeSheng完成签到,获得积分10
9秒前
wcli发布了新的文献求助10
9秒前
过时的机器猫完成签到,获得积分10
11秒前
Lucas应助dadadada采纳,获得10
12秒前
12秒前
zhang发布了新的文献求助10
12秒前
14秒前
14秒前
乐乐应助Re采纳,获得10
15秒前
优美的书雪完成签到,获得积分20
15秒前
16秒前
18秒前
18秒前
隐形曼青应助333采纳,获得10
19秒前
魏儒蕾发布了新的文献求助10
19秒前
20秒前
Re完成签到,获得积分10
20秒前
乐观笑南发布了新的文献求助10
20秒前
活力怜雪完成签到 ,获得积分10
20秒前
21秒前
Hello应助望仔采纳,获得10
21秒前
wy.he应助StarSilverSaint采纳,获得10
22秒前
娲牛佳发布了新的文献求助10
22秒前
22秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5380219
求助须知:如何正确求助?哪些是违规求助? 4504247
关于积分的说明 14017616
捐赠科研通 4413210
什么是DOI,文献DOI怎么找? 2424135
邀请新用户注册赠送积分活动 1416975
关于科研通互助平台的介绍 1394719