亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

VOLO: Vision Outlooker for Visual Recognition

计算机科学 人工智能 计算 模式识别(心理学) 瓶颈 特征(语言学) 安全性令牌 变压器 算法 计算机安全 语言学 量子力学 物理 哲学 嵌入式系统 电压
作者
Li Yuan,Qibin Hou,Zihang Jiang,Jiashi Feng,Shuicheng Yan
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-13 被引量:200
标识
DOI:10.1109/tpami.2022.3206108
摘要

Recently, Vision Transformers (ViTs) have been broadly explored in visual recognition. With low efficiency in encoding fine-level features, the performance of ViTs is still inferior to the state-of-the-art CNNs when trained from scratch on a midsize dataset like ImageNet. Through experimental analysis, we find it is because of two reasons: 1) the simple tokenization of input images fails to model the important local structure such as edges and lines, leading to low training sample efficiency; 2) the redundant attention backbone design of ViTs leads to limited feature richness for fixed computation budgets and limited training samples. To overcome such limitations, we present a new simple and generic architecture, termed Vision Outlooker (VOLO), which implements a novel outlook attention operation that dynamically conduct the local feature aggregation mechanism in a sliding window manner across the input image. Unlike self-attention that focuses on modeling global dependencies of local features at a coarse level, our outlook attention targets at encoding finer-level features, which is critical for recognition but ignored by self-attention. Outlook attention breaks the bottleneck of self-attention whose computation cost scales quadratically with the input spatial dimension, and thus is much more memory efficient. Compared to our Tokens-To-Token Vision Transformer (T2T-ViT), VOLO can more efficiently encode fine-level features that are essential for high-performance visual recognition. Experiments show that with only 26.6 M learnable parameters, VOLO achieves 84.2% top-1 accuracy on ImageNet-1 K without using extra training data, 2.7% better than T2T-ViT with a comparable number of parameters. When the model size is scaled up to 296 M parameters, its performance can be further improved to 87.1%, setting a new record for ImageNet-1 K classification. In addition, we also take the proposed VOLO as pretrained models and report superior performance on downstream tasks, such as semantic segmentation. Code is available at https://github.com/sail-sg/volo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
onion完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
自由的果汁完成签到,获得积分10
1分钟前
彭于晏应助zqaixj采纳,获得30
1分钟前
肖治民发布了新的文献求助10
1分钟前
肖治民完成签到,获得积分10
1分钟前
1分钟前
zqaixj完成签到,获得积分20
2分钟前
大个应助喊我彩彩采纳,获得10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
zzzllove完成签到 ,获得积分10
3分钟前
3分钟前
英勇小伙完成签到,获得积分10
3分钟前
3分钟前
喊我彩彩发布了新的文献求助10
3分钟前
3分钟前
小玉米完成签到 ,获得积分10
4分钟前
喊我彩彩完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
CING发布了新的文献求助10
4分钟前
4分钟前
尊敬的丹烟完成签到 ,获得积分10
4分钟前
wwww完成签到 ,获得积分10
4分钟前
5分钟前
CING完成签到,获得积分10
5分钟前
clp完成签到,获得积分10
5分钟前
5分钟前
shirley要奋斗完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
andrele应助科研通管家采纳,获得10
6分钟前
jeronimo完成签到,获得积分10
6分钟前
yhgz完成签到,获得积分10
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
葉鳳怡完成签到 ,获得积分10
7分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960064
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128619
捐赠科研通 3238269
什么是DOI,文献DOI怎么找? 1789671
邀请新用户注册赠送积分活动 871846
科研通“疑难数据库(出版商)”最低求助积分说明 803069