Recent Advances in Conventional and Deep Learning-Based Depth Completion: A Survey

人工智能 计算机科学 深度图 激光雷达 深度学习 计算机视觉 RGB颜色模型 任务(项目管理) 测距 钥匙(锁) 对象(语法) 图像(数学) 实测深度 遥感 地理 地质学 电信 经济 管理 计算机安全 地球物理学
作者
Zexiao Xie,Xiaoxuan Yu,Xiang Gao,Kunqian Li,Shuhan Shen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (3): 3395-3415 被引量:14
标识
DOI:10.1109/tnnls.2022.3201534
摘要

Depth completion aims to recover pixelwise depth from incomplete and noisy depth measurements with or without the guidance of a reference RGB image. This task attracted considerable research interest due to its importance in various computer vision-based applications, such as scene understanding, autonomous driving, 3-D reconstruction, object detection, pose estimation, trajectory prediction, and so on. As the system input, an incomplete depth map is usually generated by projecting the 3-D points collected by ranging sensors, such as LiDAR in outdoor environments, or obtained directly from RGB-D cameras in indoor areas. However, even if a high-end LiDAR is employed, the obtained depth maps are still very sparse and noisy, especially in the regions near the object boundaries, which makes the depth completion task a challenging problem. To address this issue, a few years ago, conventional image processing-based techniques were employed to fill the holes and remove the noise from the relatively dense depth maps obtained by RGB-D cameras, while deep learning-based methods have recently become increasingly popular and inspiring results have been achieved, especially for the challenging situation of LiDAR-image-based depth completion. This article systematically reviews and summarizes the works related to the topic of depth completion in terms of input modalities, data fusion strategies, loss functions, and experimental settings, especially for the key techniques proposed in deep learning-based multiple input methods. On this basis, we conclude by presenting the current status of depth completion and discussing several prospects for its future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
baishuo完成签到,获得积分10
4秒前
杨美琪发布了新的文献求助10
5秒前
充电宝应助向北游采纳,获得10
5秒前
xiaozou55完成签到 ,获得积分10
6秒前
大力完成签到 ,获得积分10
8秒前
10秒前
zhangyuting完成签到 ,获得积分10
11秒前
kid1412完成签到 ,获得积分10
11秒前
xn201120完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
14秒前
小新小新完成签到 ,获得积分10
14秒前
Dromaeotroodon完成签到,获得积分10
15秒前
江城闲鹤发布了新的文献求助10
15秒前
Singularity应助科研通管家采纳,获得10
19秒前
Singularity应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
Singularity应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
Singularity应助科研通管家采纳,获得10
19秒前
Singularity应助科研通管家采纳,获得10
19秒前
leaolf应助科研通管家采纳,获得150
19秒前
19秒前
19秒前
20秒前
Tina完成签到 ,获得积分10
23秒前
26秒前
tryagain发布了新的文献求助10
29秒前
争气完成签到 ,获得积分10
29秒前
WZH完成签到,获得积分10
31秒前
李爱国应助江城闲鹤采纳,获得10
34秒前
材1完成签到 ,获得积分10
34秒前
FashionBoy应助up采纳,获得10
35秒前
量子星尘发布了新的文献求助10
35秒前
paper完成签到,获得积分10
36秒前
情怀应助wubin69采纳,获得10
39秒前
linnnn完成签到,获得积分20
40秒前
tryagain完成签到,获得积分10
45秒前
yoyofun完成签到,获得积分10
45秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044603
求助须知:如何正确求助?哪些是违规求助? 4274186
关于积分的说明 13323344
捐赠科研通 4087837
什么是DOI,文献DOI怎么找? 2236545
邀请新用户注册赠送积分活动 1243935
关于科研通互助平台的介绍 1171966