Recent Advances in Conventional and Deep Learning-Based Depth Completion: A Survey

人工智能 计算机科学 深度图 激光雷达 深度学习 计算机视觉 RGB颜色模型 任务(项目管理) 测距 钥匙(锁) 对象(语法) 图像(数学) 实测深度 遥感 地理 地质学 电信 计算机安全 管理 经济 地球物理学
作者
Zexiao Xie,Xiaoxuan Yu,Xiang Gao,Kunqian Li,Shuhan Shen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (3): 3395-3415 被引量:14
标识
DOI:10.1109/tnnls.2022.3201534
摘要

Depth completion aims to recover pixelwise depth from incomplete and noisy depth measurements with or without the guidance of a reference RGB image. This task attracted considerable research interest due to its importance in various computer vision-based applications, such as scene understanding, autonomous driving, 3-D reconstruction, object detection, pose estimation, trajectory prediction, and so on. As the system input, an incomplete depth map is usually generated by projecting the 3-D points collected by ranging sensors, such as LiDAR in outdoor environments, or obtained directly from RGB-D cameras in indoor areas. However, even if a high-end LiDAR is employed, the obtained depth maps are still very sparse and noisy, especially in the regions near the object boundaries, which makes the depth completion task a challenging problem. To address this issue, a few years ago, conventional image processing-based techniques were employed to fill the holes and remove the noise from the relatively dense depth maps obtained by RGB-D cameras, while deep learning-based methods have recently become increasingly popular and inspiring results have been achieved, especially for the challenging situation of LiDAR-image-based depth completion. This article systematically reviews and summarizes the works related to the topic of depth completion in terms of input modalities, data fusion strategies, loss functions, and experimental settings, especially for the key techniques proposed in deep learning-based multiple input methods. On this basis, we conclude by presenting the current status of depth completion and discussing several prospects for its future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助qrt采纳,获得10
2秒前
MQ完成签到,获得积分10
2秒前
豆子发布了新的文献求助10
2秒前
Ran-HT完成签到,获得积分10
4秒前
不安听露完成签到 ,获得积分10
5秒前
Cupid完成签到,获得积分10
5秒前
aaaa完成签到 ,获得积分10
6秒前
6秒前
fantast完成签到,获得积分10
6秒前
清浅完成签到,获得积分10
7秒前
8秒前
8秒前
Arrebol完成签到,获得积分10
10秒前
研友_850aeZ完成签到,获得积分0
10秒前
lshao完成签到 ,获得积分10
10秒前
胖头鱼发布了新的文献求助10
11秒前
qrt发布了新的文献求助10
12秒前
阿尔法贝塔完成签到 ,获得积分10
13秒前
zhou完成签到,获得积分10
13秒前
delect完成签到,获得积分10
14秒前
安详的觅风完成签到,获得积分10
14秒前
敏er完成签到,获得积分10
14秒前
孙明浩完成签到 ,获得积分10
16秒前
17秒前
元气少女猪刚鬣完成签到,获得积分10
18秒前
cmh完成签到 ,获得积分10
20秒前
漂南仰完成签到,获得积分10
21秒前
bmhs2017发布了新的文献求助10
22秒前
无私的电灯胆完成签到,获得积分10
22秒前
乐乐应助小李老博采纳,获得10
23秒前
唐诗阅完成签到,获得积分10
26秒前
xulei完成签到,获得积分20
26秒前
28秒前
Amon完成签到 ,获得积分10
29秒前
Ying完成签到 ,获得积分10
29秒前
放逐发布了新的文献求助10
31秒前
NexusExplorer应助无辜群众采纳,获得10
31秒前
C胖胖完成签到,获得积分10
33秒前
感性的俊驰完成签到 ,获得积分10
37秒前
舒适可乐完成签到,获得积分10
37秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378793
求助须知:如何正确求助?哪些是违规求助? 4503229
关于积分的说明 14015370
捐赠科研通 4411933
什么是DOI,文献DOI怎么找? 2423548
邀请新用户注册赠送积分活动 1416499
关于科研通互助平台的介绍 1393963