Recent Advances in Conventional and Deep Learning-Based Depth Completion: A Survey

人工智能 计算机科学 深度图 激光雷达 深度学习 计算机视觉 RGB颜色模型 任务(项目管理) 测距 钥匙(锁) 对象(语法) 图像(数学) 实测深度 遥感 地理 地质学 电信 经济 管理 计算机安全 地球物理学
作者
Zexiao Xie,Xiaoxuan Yu,Xiang Gao,Kunqian Li,Shuhan Shen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (3): 3395-3415 被引量:14
标识
DOI:10.1109/tnnls.2022.3201534
摘要

Depth completion aims to recover pixelwise depth from incomplete and noisy depth measurements with or without the guidance of a reference RGB image. This task attracted considerable research interest due to its importance in various computer vision-based applications, such as scene understanding, autonomous driving, 3-D reconstruction, object detection, pose estimation, trajectory prediction, and so on. As the system input, an incomplete depth map is usually generated by projecting the 3-D points collected by ranging sensors, such as LiDAR in outdoor environments, or obtained directly from RGB-D cameras in indoor areas. However, even if a high-end LiDAR is employed, the obtained depth maps are still very sparse and noisy, especially in the regions near the object boundaries, which makes the depth completion task a challenging problem. To address this issue, a few years ago, conventional image processing-based techniques were employed to fill the holes and remove the noise from the relatively dense depth maps obtained by RGB-D cameras, while deep learning-based methods have recently become increasingly popular and inspiring results have been achieved, especially for the challenging situation of LiDAR-image-based depth completion. This article systematically reviews and summarizes the works related to the topic of depth completion in terms of input modalities, data fusion strategies, loss functions, and experimental settings, especially for the key techniques proposed in deep learning-based multiple input methods. On this basis, we conclude by presenting the current status of depth completion and discussing several prospects for its future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夲光完成签到 ,获得积分10
1秒前
1秒前
kinji完成签到,获得积分10
1秒前
昕昕233完成签到,获得积分10
2秒前
22发布了新的文献求助10
2秒前
2秒前
2秒前
传奇3应助nzxnzx采纳,获得10
2秒前
2秒前
bkagyin应助顺利紫山采纳,获得10
3秒前
殷权威发布了新的文献求助10
3秒前
doctorbin完成签到 ,获得积分10
3秒前
遊星完成签到,获得积分10
3秒前
wyx发布了新的文献求助10
3秒前
7秒前
7秒前
wyf完成签到,获得积分20
7秒前
7秒前
汉堡包应助萤火虫采纳,获得10
8秒前
黯然发布了新的文献求助10
8秒前
充电宝应助Shinewei采纳,获得10
9秒前
9秒前
圆锥香蕉应助贵贵采纳,获得20
9秒前
9秒前
10秒前
殷权威完成签到,获得积分10
10秒前
10秒前
风出袖发布了新的文献求助30
11秒前
huangr123发布了新的文献求助10
11秒前
爱因斯宣发布了新的文献求助10
11秒前
只如初发布了新的文献求助10
12秒前
kirirto完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
黄紫红蓝发布了新的文献求助10
14秒前
15秒前
15秒前
anna1992发布了新的文献求助10
16秒前
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650