Efficient Semi-Supervised Multimodal Hashing With Importance Differentiation Regression

散列函数 计算机科学 二进制代码 双重哈希 特征哈希 人工智能 机器学习 模式识别(心理学) 哈希表 数据挖掘 二进制数 数学 计算机安全 算术
作者
C. Zheng,Lei Zhu,Zheng Zhang,Jingjing Li,Xiaomei Yu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 5881-5892 被引量:7
标识
DOI:10.1109/tip.2022.3203216
摘要

Multi-modal hashing learns compact binary hash codes by collaborating heterogeneous multi-modal features at both the model training and online retrieval stages to support large-scale multimedia retrieval. Previous multi-modal hashing methods mainly focus on supervised and unsupervised hashing. The performance of supervised hashing largely relies on the number of labeled data, which is practically expensive to obtain. Unsupervised hashing methods cannot effectively capture the semantic correlations of multi-modal data without any labels for supervision. In this paper, we propose an Efficient Semi-supervised Multi-modal Hashing with Importance Differentiation Regression (ESMH-IDR) model, which can alleviate the existing problems by learning from both labeled and unlabeled data. Specifically, in this paper, we develop an efficient semi-supervised multi-modal hash code learning module. It learns the hash codes for labeled data in an efficient asymmetric way, and simultaneously performs nonlinear regression using the same projection matrix as the labeled samples to preserve the intrinsic data structure of unlabeled data. Besides, different from existing methods, we propose an importance differentiation regression strategy to learn hash functions by specially considering the different importance of hash codes learned from the labeled and unlabeled samples. Finally, we develop an efficient discrete optimization method guaranteed with convergence to iteratively solve the hash optimization problem. Experiments on several public multimedia retrieval datasets demonstrate the superiority of our proposed method on both retrieval effectiveness and efficiency. Our source codes and testing datasets can be obtained at https://github.com/ChaoqunZheng/ESMH.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
znn发布了新的文献求助10
2秒前
3秒前
3秒前
阿姊完成签到 ,获得积分10
3秒前
4秒前
Orange应助游若采纳,获得30
5秒前
安沁完成签到,获得积分10
5秒前
火星上天德完成签到 ,获得积分20
5秒前
亘古匆匆举报Re求助涉嫌违规
5秒前
科研通AI5应助自然的音响采纳,获得10
5秒前
sun发布了新的文献求助10
6秒前
mingpu应助火星上大白菜采纳,获得10
6秒前
7秒前
拍个月亮发布了新的文献求助10
7秒前
小滨完成签到 ,获得积分10
8秒前
8秒前
8秒前
大有可wei完成签到,获得积分20
9秒前
9秒前
欧雪发布了新的文献求助10
10秒前
10秒前
huang驳回了打打应助
10秒前
可爱大悦城完成签到,获得积分10
10秒前
11秒前
高不二完成签到,获得积分10
11秒前
研友_VZG7GZ应助加百莉采纳,获得10
12秒前
12秒前
皮皮发布了新的文献求助10
12秒前
小作坊钳工完成签到,获得积分10
13秒前
齐桉发布了新的文献求助30
13秒前
露露思发布了新的文献求助10
14秒前
14秒前
搜集达人应助薇薇采纳,获得10
14秒前
15秒前
15秒前
15秒前
噗噗蝶pd发布了新的文献求助30
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Handbook of Laboratory Animal Science 200
Gastric juice analysis in clinical practice: are we ready for the prime time? 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3697764
求助须知:如何正确求助?哪些是违规求助? 3249035
关于积分的说明 9861649
捐赠科研通 2960550
什么是DOI,文献DOI怎么找? 1623574
邀请新用户注册赠送积分活动 768707
科研通“疑难数据库(出版商)”最低求助积分说明 741744