Efficient Semi-Supervised Multimodal Hashing With Importance Differentiation Regression

散列函数 计算机科学 二进制代码 双重哈希 特征哈希 人工智能 机器学习 模式识别(心理学) 哈希表 数据挖掘 二进制数 数学 计算机安全 算术
作者
C. Zheng,Lei Zhu,Zheng Zhang,Jingjing Li,Xiaomei Yu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 5881-5892 被引量:7
标识
DOI:10.1109/tip.2022.3203216
摘要

Multi-modal hashing learns compact binary hash codes by collaborating heterogeneous multi-modal features at both the model training and online retrieval stages to support large-scale multimedia retrieval. Previous multi-modal hashing methods mainly focus on supervised and unsupervised hashing. The performance of supervised hashing largely relies on the number of labeled data, which is practically expensive to obtain. Unsupervised hashing methods cannot effectively capture the semantic correlations of multi-modal data without any labels for supervision. In this paper, we propose an Efficient Semi-supervised Multi-modal Hashing with Importance Differentiation Regression (ESMH-IDR) model, which can alleviate the existing problems by learning from both labeled and unlabeled data. Specifically, in this paper, we develop an efficient semi-supervised multi-modal hash code learning module. It learns the hash codes for labeled data in an efficient asymmetric way, and simultaneously performs nonlinear regression using the same projection matrix as the labeled samples to preserve the intrinsic data structure of unlabeled data. Besides, different from existing methods, we propose an importance differentiation regression strategy to learn hash functions by specially considering the different importance of hash codes learned from the labeled and unlabeled samples. Finally, we develop an efficient discrete optimization method guaranteed with convergence to iteratively solve the hash optimization problem. Experiments on several public multimedia retrieval datasets demonstrate the superiority of our proposed method on both retrieval effectiveness and efficiency. Our source codes and testing datasets can be obtained at https://github.com/ChaoqunZheng/ESMH.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
燕园发布了新的文献求助10
3秒前
nana完成签到 ,获得积分10
3秒前
顾矜应助独特的土豆采纳,获得10
3秒前
输入法完成签到,获得积分10
3秒前
3秒前
5秒前
哒哒完成签到 ,获得积分10
5秒前
Jasper应助酸菜萌萌鱼采纳,获得10
6秒前
6秒前
6秒前
郝宝真发布了新的文献求助10
6秒前
卑微老大完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
9秒前
醉熏的初柳完成签到,获得积分10
11秒前
初夏发布了新的文献求助10
11秒前
11秒前
11秒前
htmy完成签到,获得积分10
11秒前
wjadejing发布了新的文献求助10
11秒前
yy关注了科研通微信公众号
12秒前
燕园完成签到,获得积分10
12秒前
木子弓长发布了新的文献求助20
12秒前
知墨完成签到,获得积分10
12秒前
12秒前
清脆南蕾完成签到,获得积分10
12秒前
张家木完成签到,获得积分10
13秒前
guozi发布了新的文献求助10
13秒前
科研通AI2S应助七霖采纳,获得10
13秒前
13秒前
奈思完成签到 ,获得积分10
14秒前
ZhouTY完成签到,获得积分10
14秒前
Chanceman发布了新的文献求助10
14秒前
14秒前
14秒前
顾矜应助dududu采纳,获得10
15秒前
Jasper应助mokano采纳,获得10
16秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147820
求助须知:如何正确求助?哪些是违规求助? 2798873
关于积分的说明 7832037
捐赠科研通 2455841
什么是DOI,文献DOI怎么找? 1306979
科研通“疑难数据库(出版商)”最低求助积分说明 627957
版权声明 601587