亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient Semi-Supervised Multimodal Hashing With Importance Differentiation Regression

散列函数 计算机科学 二进制代码 双重哈希 特征哈希 人工智能 机器学习 模式识别(心理学) 哈希表 数据挖掘 二进制数 数学 计算机安全 算术
作者
C. Zheng,Lei Zhu,Zheng Zhang,Jingjing Li,Xiaomei Yu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 5881-5892 被引量:7
标识
DOI:10.1109/tip.2022.3203216
摘要

Multi-modal hashing learns compact binary hash codes by collaborating heterogeneous multi-modal features at both the model training and online retrieval stages to support large-scale multimedia retrieval. Previous multi-modal hashing methods mainly focus on supervised and unsupervised hashing. The performance of supervised hashing largely relies on the number of labeled data, which is practically expensive to obtain. Unsupervised hashing methods cannot effectively capture the semantic correlations of multi-modal data without any labels for supervision. In this paper, we propose an Efficient Semi-supervised Multi-modal Hashing with Importance Differentiation Regression (ESMH-IDR) model, which can alleviate the existing problems by learning from both labeled and unlabeled data. Specifically, in this paper, we develop an efficient semi-supervised multi-modal hash code learning module. It learns the hash codes for labeled data in an efficient asymmetric way, and simultaneously performs nonlinear regression using the same projection matrix as the labeled samples to preserve the intrinsic data structure of unlabeled data. Besides, different from existing methods, we propose an importance differentiation regression strategy to learn hash functions by specially considering the different importance of hash codes learned from the labeled and unlabeled samples. Finally, we develop an efficient discrete optimization method guaranteed with convergence to iteratively solve the hash optimization problem. Experiments on several public multimedia retrieval datasets demonstrate the superiority of our proposed method on both retrieval effectiveness and efficiency. Our source codes and testing datasets can be obtained at https://github.com/ChaoqunZheng/ESMH.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助禹山河采纳,获得10
15秒前
激动的似狮完成签到,获得积分10
33秒前
gszy1975完成签到,获得积分10
42秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
哭泣海雪完成签到 ,获得积分10
51秒前
53秒前
免我蹉跎苦完成签到,获得积分20
1分钟前
1分钟前
机灵水卉完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
大模型应助更明采纳,获得10
1分钟前
2分钟前
VAE完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
博博完成签到,获得积分10
2分钟前
钢钢完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
曹燃发布了新的文献求助10
2分钟前
甜甜的紫菜完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
心灵美凝竹完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
xingsixs完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
JamesPei应助科研通管家采纳,获得10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960125
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128619
捐赠科研通 3238289
什么是DOI,文献DOI怎么找? 1789684
邀请新用户注册赠送积分活动 871846
科研通“疑难数据库(出版商)”最低求助积分说明 803069