Ultrahigh Stable Methanol Oxidation Enabled by a High Hydroxyl Concentration on Pt Clusters/MXene Interfaces

化学 过电位 甲醇 催化作用 乙二醇 化学工程 铂金 阳极 动力学 吸附 溶解 无机化学 电化学 物理化学 有机化学 电极 物理 工程类 量子力学
作者
Jiexin Zhu,Lixue Xia,Ruohan Yu,Ruihu Lu,Jiantao Li,Ruhan He,Yucai Wu,Wei Zhang,Xufeng Hong,Wei Chen,Yan Zhao,Liang Zhou,Liqiang Mai,Ziyun Wang
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (34): 15529-15538 被引量:219
标识
DOI:10.1021/jacs.2c03982
摘要

Anchoring platinum catalysts on appropriate supports, e.g., MXenes, is a feasible pathway to achieve a desirable anode for direct methanol fuel cells. The authentic performance of Pt is often hindered by the occupancy and poisoning of active sites, weak interaction between Pt and supports, and the dissolution of Pt. Herein, we construct three-dimensional (3D) crumpled Ti3C2Tx MXene balls with abundant Ti vacancies for Pt confinement via a spray-drying process. The as-prepared Pt clusters/Ti3C2Tx (Ptc/Ti3C2Tx) show enhanced electrocatalytic methanol oxidation reaction (MOR) activity, including a relatively low overpotential, high tolerance to CO poisoning, and ultrahigh stability. Specifically, it achieves a high mass activity of up to 7.32 A mgPt-1, which is the highest value reported to date in Pt-based electrocatalysts, and 42% of the current density is retained on Ptc/Ti3C2Tx even after the 3000 min operative time. In situ spectroscopy and theoretical calculations reveal that an electric field-induced repulsion on the Ptc/Ti3C2Tx interface accelerates the combination of OH- and CO adsorption intermediates (COads) in kinetics and thermodynamics. Besides, this Ptc/Ti3C2Tx also efficiently electrocatalyze ethanol, ethylene glycol, and glycerol oxidation reactions with comparable activity and stability to commercial Pt/C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一衣发布了新的文献求助20
1秒前
可爱的函函应助药学牛马采纳,获得10
1秒前
XM发布了新的文献求助10
1秒前
专注之双完成签到,获得积分10
2秒前
SciGPT应助十一采纳,获得10
2秒前
2秒前
A1234完成签到,获得积分10
3秒前
刘铭晨发布了新的文献求助10
4秒前
孙冉冉完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
大模型应助hhzz采纳,获得10
9秒前
一只智慧喵完成签到,获得积分10
9秒前
科目三应助Fundamental采纳,获得10
10秒前
10秒前
miumiuka发布了新的文献求助10
11秒前
greenPASS666发布了新的文献求助10
12秒前
xuanxuan发布了新的文献求助10
12秒前
zfy发布了新的文献求助10
14秒前
14秒前
14秒前
Maor完成签到,获得积分10
14秒前
白菜发布了新的文献求助10
15秒前
15秒前
16秒前
妮妮完成签到 ,获得积分10
18秒前
18秒前
傲娇的凡旋应助spurs17采纳,获得10
18秒前
长情若魔完成签到,获得积分10
20秒前
XM完成签到,获得积分10
20秒前
20秒前
LQW发布了新的文献求助30
20秒前
大个应助Rrr采纳,获得10
20秒前
21秒前
22秒前
22秒前
24秒前
zfy完成签到,获得积分10
24秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808