MRI-Derived Radiomics Model to Predict the Biochemical Recurrence of Prostate Cancer Following Seed Brachytherapy

医学 接收机工作特性 Lasso(编程语言) 前列腺癌 磁共振成像 比例危险模型 一致性 近距离放射治疗 断点群集区域 生化复发 核医学 无线电技术 放射科 癌症 放射治疗 内科学 计算机科学 前列腺切除术 万维网 受体
作者
Xuehua Zhu,Zenan Liu,Jide He,Ziang Li,Yi Huang,Jian Lu
出处
期刊:Archivos españoles de urología [SciELO]
卷期号:76 (4): 264-264 被引量:4
标识
DOI:10.56434/j.arch.esp.urol.20237604.30
摘要

Objective: We aimed to investigate the predictive value of imaging features derived from magnetic resonance imaging (MRI) and develop a radiomics model predicting the biochemical recurrence-free survival (BFS) in prostate cancer (PCa) patients treated with seed brachytherapy (seed-BT). Methods: The data of 272 patients with PCa treated with seed-BT at Peking University Third Hospital from 2007 to 2019 was retrospectively investigated. Based on the eligibility criteria, 83 patients were finally included in our study. The cohort was divided into two groups in a ratio of 8:2 (training set: n = 67, test set: n = 16). The Cox survival model combined with the least absolute shrinkage and selection operator (LASSO) algorithm was applied to select the radiomics features from T2WI of pretreatment MRI. A radiomics model with selected features was established to predict the BFS. Results: Nineteen patients experienced biochemical recurrence (BCR) during a median follow-up period of 46 months. Three features with non-zero coefficients were selected from 1598 features and used to construct a radiomics model for BCR prediction. The model accurately predicted the BCR in both the training and test groups, for which the concordance index (C-index) were 0.83 and 0.78, respectively. Receiver operating characteristic (ROC) analysis of the test set was conducted to assess the prediction accuracy. The model achieved a high area under the operator curve (AUC) performance for BCR prediction in the test cohort. Conclusions: Our study revealed the considerable potential of a radiomics model based on MRI-derived imaging features in BCR prediction of PCa patients after seed-BT. Radiomics provides a new perspective to clinicians assessing the outcome of radiotherapy, facilitating accurate prognostic evaluation and preoperative consultation for PCa patients followed by seed-BT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助不得采纳,获得10
刚刚
cici完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
科研通AI6应助微笑采纳,获得10
2秒前
2秒前
Tanya47应助陶醉凝丝采纳,获得10
2秒前
清风完成签到 ,获得积分10
2秒前
2秒前
小黑仙儿完成签到,获得积分10
3秒前
阿雷发布了新的文献求助10
3秒前
Melan发布了新的文献求助10
4秒前
4秒前
郑方形发布了新的文献求助10
4秒前
4秒前
远航发布了新的文献求助10
4秒前
BH发布了新的文献求助10
4秒前
miao3718完成签到 ,获得积分10
4秒前
6秒前
Echo发布了新的文献求助10
6秒前
L1发布了新的文献求助10
6秒前
小杜在此发布了新的文献求助10
6秒前
LIDD完成签到,获得积分10
6秒前
发嗲的鸡发布了新的文献求助10
7秒前
mhr发布了新的文献求助10
8秒前
8秒前
科目三应助zuoym采纳,获得10
8秒前
8秒前
今后应助sansan采纳,获得10
8秒前
IIIris发布了新的文献求助10
8秒前
KFC代吃完成签到,获得积分10
9秒前
xm102322应助小小志采纳,获得20
9秒前
juzitinghai完成签到,获得积分10
10秒前
淡然夏天发布了新的文献求助10
10秒前
10秒前
Melan完成签到,获得积分10
10秒前
11秒前
11秒前
Orange应助fengzi151采纳,获得10
12秒前
hululu完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660809
求助须知:如何正确求助?哪些是违规求助? 4835652
关于积分的说明 15091990
捐赠科研通 4819406
什么是DOI,文献DOI怎么找? 2579257
邀请新用户注册赠送积分活动 1533773
关于科研通互助平台的介绍 1492565