亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MRI-Derived Radiomics Model to Predict the Biochemical Recurrence of Prostate Cancer Following Seed Brachytherapy

医学 接收机工作特性 Lasso(编程语言) 前列腺癌 磁共振成像 比例危险模型 一致性 近距离放射治疗 断点群集区域 生化复发 核医学 无线电技术 放射科 癌症 放射治疗 内科学 计算机科学 前列腺切除术 受体 万维网
作者
Xuehua Zhu,Zenan Liu,Jide He,Ziang Li,Yi Huang,Jian Lu
出处
期刊:Archivos españoles de urología [SciELO]
卷期号:76 (4): 264-264 被引量:4
标识
DOI:10.56434/j.arch.esp.urol.20237604.30
摘要

Objective: We aimed to investigate the predictive value of imaging features derived from magnetic resonance imaging (MRI) and develop a radiomics model predicting the biochemical recurrence-free survival (BFS) in prostate cancer (PCa) patients treated with seed brachytherapy (seed-BT). Methods: The data of 272 patients with PCa treated with seed-BT at Peking University Third Hospital from 2007 to 2019 was retrospectively investigated. Based on the eligibility criteria, 83 patients were finally included in our study. The cohort was divided into two groups in a ratio of 8:2 (training set: n = 67, test set: n = 16). The Cox survival model combined with the least absolute shrinkage and selection operator (LASSO) algorithm was applied to select the radiomics features from T2WI of pretreatment MRI. A radiomics model with selected features was established to predict the BFS. Results: Nineteen patients experienced biochemical recurrence (BCR) during a median follow-up period of 46 months. Three features with non-zero coefficients were selected from 1598 features and used to construct a radiomics model for BCR prediction. The model accurately predicted the BCR in both the training and test groups, for which the concordance index (C-index) were 0.83 and 0.78, respectively. Receiver operating characteristic (ROC) analysis of the test set was conducted to assess the prediction accuracy. The model achieved a high area under the operator curve (AUC) performance for BCR prediction in the test cohort. Conclusions: Our study revealed the considerable potential of a radiomics model based on MRI-derived imaging features in BCR prediction of PCa patients after seed-BT. Radiomics provides a new perspective to clinicians assessing the outcome of radiotherapy, facilitating accurate prognostic evaluation and preoperative consultation for PCa patients followed by seed-BT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
11111发布了新的文献求助10
7秒前
jam发布了新的文献求助10
7秒前
dingbeicn完成签到,获得积分10
9秒前
王威发布了新的文献求助10
10秒前
等待完成签到 ,获得积分10
12秒前
22秒前
23秒前
innocent完成签到 ,获得积分10
27秒前
木木发布了新的文献求助10
28秒前
30秒前
HD完成签到,获得积分10
32秒前
HD发布了新的文献求助10
35秒前
jam完成签到,获得积分10
35秒前
古今奇观完成签到 ,获得积分10
37秒前
Acanyi完成签到,获得积分10
38秒前
39秒前
40秒前
科研通AI6应助坚强的金鱼采纳,获得10
42秒前
Monicamo发布了新的文献求助10
44秒前
天天天晴完成签到 ,获得积分10
51秒前
田様应助王威采纳,获得10
52秒前
Hello应助traminer采纳,获得30
54秒前
58秒前
CipherSage应助Monicamo采纳,获得30
59秒前
李健应助hua采纳,获得10
1分钟前
梦华老师发布了新的文献求助10
1分钟前
Ava应助yyh采纳,获得10
1分钟前
伶俐惜萱发布了新的文献求助10
1分钟前
时势造英雄完成签到 ,获得积分10
1分钟前
1分钟前
Ava应助max采纳,获得10
1分钟前
Monicamo完成签到,获得积分10
1分钟前
科研通AI6应助伶俐惜萱采纳,获得30
1分钟前
酷波er应助beidou采纳,获得10
1分钟前
1分钟前
汉堡包应助梦华老师采纳,获得30
1分钟前
雪白的面包完成签到 ,获得积分0
1分钟前
1分钟前
111发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469916
求助须知:如何正确求助?哪些是违规求助? 4572931
关于积分的说明 14337687
捐赠科研通 4499830
什么是DOI,文献DOI怎么找? 2465345
邀请新用户注册赠送积分活动 1453733
关于科研通互助平台的介绍 1428292