作者
Shuai C,Shuai Chen,Bing Yu,Yuheng Luo,Ping Zheng,Zhiqing Huang,Jie Yu,Xiangbing Mao,Huiyan,Jun He
摘要
To explore the effects of fermented rapeseed meal (FRSM) on growth performance and intestinal health, a total of 30 growing pigs were randomly allotted to three treatments consisting of corn-soybean meal diet (CSD), rapeseed meal diet (RSD), and fermented rapeseed meal diet (FRSD). Results showed that compared with RSD, FRSD feeding increased the average daily gain and final body weight in pigs (P < 0.01). Compared with RSD feeding, FRSD feeding elevated the apparent digestibility of crude protein, acid detergent fiber, and ether extract in pigs (P < 0.01). Moreover, the FRSD group exhibited greater apparent ileal digestibility of His, Thr, Lys, and Ser than the RSD group (P < 0.01). The digestible energy, metabolic energy, and nitrogen utilization were higher in the FRSD and CSD groups than in the RSD group (P < 0.01). As compared to the RSD, FRSD feeding decreased the serum concentration of leptin but significantly increased the concentrations of immunoglobulin (Ig) A, IgG, IgM, and enzyme activities of amylase, lipase, and trypsin in the pancreas (P < 0.05). Interestingly, the villus height, the ratio of villus height to crypt depth, and the activities of brush border enzymes (e.g., maltase and sucrase) in the small intestine were higher in the CSD and FRSD groups than in the RSD group (P < 0.05). As compared to the RSD, the FRSD feeding not only increased the expression level of the occludin in the small intestinal epithelium (P < 0.05) but also elevated the expression levels of claudin-1, MUC1, and PepT1 genes in the duodenum, and elevated the expression levels of SGLT1 and CAT1 genes in the jejunum (P < 0.05). Importantly, FRSD feeding significantly decreased the abundance of Escherichia coli, but increased the abundance of Lactobacillus and the content of butyrate in the cecum and colon (P < 0.05). These results indicated that compared with rapeseed meal, fermented rapeseed meal exhibited a positive effect on improving the growth performance and intestinal health in growing pigs, and the results may also help develop novel protein sources for animal nutrition and the feed industry.