Multimodal Fake News Detection Incorporating External Knowledge and User Interaction Feature

计算机科学 情报检索 社会化媒体 相似性(几何) 图形 特征(语言学) 背景(考古学) 万维网 人工智能 理论计算机科学 古生物学 语言学 哲学 图像(数学) 生物
作者
Lifang Fu,Shuai Liu
出处
期刊:Advances in multimedia [Hindawi Limited]
卷期号:2023: 1-10 被引量:2
标识
DOI:10.1155/2023/8836476
摘要

With the development of online social media, the number of various news has exploded. While social media provides an information platform for news release and dissemination, it also makes fake news proliferate, which may cause potential social risks. How to detect fake news quickly and accurately is a difficult task. The multimodal fusion fake news detection model is the current research focus and development trend. However, in terms of content, most existing methods lack the mining of background knowledge hidden in the news content and ignore the connection between background knowledge and existing knowledge system. In terms of the propagation chain, the research tends to emphasize only the single chain from the previous communication node, ignoring the intricate communication chain and the mutual influence relationship among users. To address these problems, this paper proposes a multimodal fake news detection model, A-KWGCN, based on knowledge graph and weighted graph convolutional network (GCN). The model fully extracted the features of the content and the interaction between users of the news dissemination. On the one hand, the model mines relevant knowledge concepts from the news content and links them with the knowledge entities in the wiki knowledge graph, and integrates knowledge entities and entity context as auxiliary information. On the other hand, inspired by the “similarity effect” in social psychology, this paper constructs a user interaction network and defines the weighted GCN by calculating the feature similarity among users to analyze the mutual influence of users. Two public datasets, Twitter15 and Twitter16, are selected to evaluate the model, and the accuracy reaches 0.905 and 0.930, respectively. In the comparison experiments, A-KWGCN model has more significant advantages than the other six comparison models in four evaluation indexes. Also, ablation experiments are conducted to verify that knowledge module and weighted GCN module play the significant role in the detection of fake news.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xbbccc发布了新的文献求助10
刚刚
1秒前
二尖瓣后叶应助顺利毕业采纳,获得10
1秒前
2秒前
哈哈发布了新的文献求助10
2秒前
2秒前
杲杲完成签到 ,获得积分10
3秒前
古药发布了新的文献求助10
5秒前
5秒前
乱世的土豆应助0313采纳,获得10
5秒前
小白发布了新的文献求助10
6秒前
6秒前
淡然珍发布了新的文献求助10
6秒前
脑洞疼应助犯困采纳,获得30
6秒前
忧心的碧完成签到,获得积分10
6秒前
7秒前
归尘发布了新的文献求助10
7秒前
8秒前
谨慎乌完成签到,获得积分10
8秒前
orixero应助靖123456采纳,获得10
9秒前
10秒前
Lee完成签到,获得积分10
10秒前
科研通AI2S应助古药采纳,获得10
10秒前
10秒前
小罗在无锡完成签到,获得积分10
11秒前
Akim应助科研通管家采纳,获得30
11秒前
丰知然应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
丰知然应助科研通管家采纳,获得10
11秒前
dwls应助科研通管家采纳,获得10
11秒前
南风应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455021
求助须知:如何正确求助?哪些是违规求助? 3050304
关于积分的说明 9020908
捐赠科研通 2738923
什么是DOI,文献DOI怎么找? 1502343
科研通“疑难数据库(出版商)”最低求助积分说明 694500
邀请新用户注册赠送积分活动 693191