胶质瘤
光热治疗
免疫原性细胞死亡
癌症研究
免疫系统
肿瘤微环境
免疫疗法
活性氧
化学
医学
免疫学
材料科学
纳米技术
生物化学
作者
Dekang Nie,Yue-Juan Ling,Wenxin Lv,Qianqian Liu,Song Deng,Jinlong Shi,Junling Yang,Yu Yang,Siguang Ouyang,Yue Huang,Yi Wang,Rongqin Huang,Wei Shi
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-07-03
卷期号:17 (14): 13885-13902
被引量:22
标识
DOI:10.1021/acsnano.3c03696
摘要
Glioblastoma (GBM) is one of the most challenging malignant brain tumors to treat. Herein, we describe a nanoenzyme hemostatic matrix strategy with the tumor cavity in situ application that simultaneously serves as photothermal agent and induces immunogenic cell death after GBM surgical resection to enhance the antitumor immunity and delay tumor recurrence. The hemostatic matrix system (Surgiflo@PCN) contains Surgiflo, a multispace structure that can be used to penetrate different shapes of tumor cavities to prevent postoperative tumor cavity hemorrhage. As well, porous palladium–copper nanoclusters (PCNs) have adjustable enzyme-like activities (oxidase, peroxidase, and catalase) responsible for formation of reactive oxygen species (ROS) under near-infrared (808 nm) laser irradiation. When the Surgiflo@PCN entered the resected tumor cavity, the first action was the direct killing of glioma cells via ROS and photothermal therapy (PTT). The second action was the induction of immunogenic cell death by PCN-enhanced oxidative stress and PTT, which reversed the immunosuppressive tumor microenvironment and enhanced the antitumor immune response. This eradicated residual glioma cells and prevented recurrence. The collective findings demonstrate that Surgiflo@PCN kills glioma cells directly through ROS and PTT and enhances antiglioma immunity and kills glioma cells indirectly. The "one-stone, two-birds" strategy could become an effective photothermal immunotherapy in GBM patients.
科研通智能强力驱动
Strongly Powered by AbleSci AI