Deep Learning-Based Track Prediction and Correction for a Radar Target

计算机科学 磁道(磁盘驱动器) 雷达 跟踪(教育) 人工智能 加速度 算法 弹道 天文 心理学 教育学 经典力学 电信 操作系统 物理
作者
Suryavijoy Kar,Sherin Babu,Dhruv Jain,Yedhu Shali,D S Saritha,Rajshekhar Vishweshwar Bhat,B N Bharath
标识
DOI:10.1109/trs.2023.3296900
摘要

Tracking targets using noisy observations is of crucial importance for various civilian and military applications. This involves, among other tasks, ascertaining the state of a target at a next time instant, called as track prediction, and combining the predicted state with a noisy observation to obtain an updated state at the current time instant, called as track correction. We consider track prediction and correction tasks of a radar target tracking application in a highly manoeuvring scenario where the targets exhibit motion in a 3D space under randomly changing constant velocity, acceleration and turn models. The detections from the targets are available at irregular time intervals. We pose the problem of prediction (correction) as a time-series regression problem where several past detections along with their time stamps are used as input, and the next (respectively, current) detection is used as the expected output. We obtain temporal convolutional network (TCN) based models for prediction and correction, which are shown to perform significantly better than the classical pre-fixed interacting multiple model (IMM) algorithm under various different scenarios in terms of the root mean squared error and standard deviation of the error between the true and predicted/corrected values, especially during model transitions and ascend/descend phases with manoeuvres.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
flysky120发布了新的文献求助10
1秒前
qiuiqiu1111发布了新的文献求助10
1秒前
Lucas应助冰柠檬采纳,获得10
2秒前
nuomi发布了新的文献求助10
3秒前
exquisite发布了新的文献求助30
3秒前
笑点低诗桃完成签到,获得积分20
3秒前
林狗完成签到,获得积分10
3秒前
4秒前
希望天下0贩的0应助学习采纳,获得10
4秒前
4秒前
小蘑菇应助蓝色斑马采纳,获得10
6秒前
8秒前
10秒前
10秒前
123完成签到 ,获得积分10
11秒前
qiuiqiu1111完成签到,获得积分10
11秒前
丘比特应助笑点低诗桃采纳,获得10
12秒前
佳佳应助Leeny采纳,获得10
12秒前
12秒前
西瓜二郎发布了新的文献求助10
12秒前
MingQue完成签到,获得积分10
12秒前
12秒前
林非鹿完成签到 ,获得积分10
14秒前
沉默诗兰发布了新的文献求助10
15秒前
15秒前
星辰大海应助lalaland采纳,获得10
15秒前
小陈发布了新的文献求助10
18秒前
冰柠檬发布了新的文献求助10
18秒前
SciGPT应助小玉采纳,获得10
19秒前
学习发布了新的文献求助10
19秒前
苏诗兰完成签到,获得积分10
19秒前
Shanglinqin完成签到,获得积分10
22秒前
Sun完成签到,获得积分10
22秒前
22秒前
田様应助夏天的蜜雪冰城采纳,获得10
23秒前
超体完成签到 ,获得积分10
23秒前
23秒前
一只完成签到,获得积分10
23秒前
SciGPT应助超靓诺言采纳,获得10
24秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966777
求助须知:如何正确求助?哪些是违规求助? 3512284
关于积分的说明 11162496
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874588
科研通“疑难数据库(出版商)”最低求助积分说明 804432