Combinatorial Use of Machine Learning and Logistic Regression for Predicting Carotid Plaque Risk Among 5.4 Million Adults With Fatty Liver Disease Receiving Health Check-Ups: Population-Based Cross-Sectional Study

医学 逻辑回归 接收机工作特性 人口 脂肪肝 随机森林 内科学 统计 疾病 机器学习 环境卫生 计算机科学 数学
作者
Yuhan Deng,Yuan Ma,Jingzhu Fu,X X Wang,Canqing Yu,Jun Lv,Sailimai Man,Bo Wang,Liming Li
出处
期刊:JMIR public health and surveillance [JMIR Publications Inc.]
卷期号:9: e47095-e47095 被引量:3
标识
DOI:10.2196/47095
摘要

Carotid plaque can progress into stroke, myocardial infarction, etc, which are major global causes of death. Evidence shows a significant increase in carotid plaque incidence among patients with fatty liver disease. However, unlike the high detection rate of fatty liver disease, screening for carotid plaque in the asymptomatic population is not yet prevalent due to cost-effectiveness reasons, resulting in a large number of patients with undetected carotid plaques, especially among those with fatty liver disease.This study aimed to combine the advantages of machine learning (ML) and logistic regression to develop a straightforward prediction model among the population with fatty liver disease to identify individuals at risk of carotid plaque.Our study included 5,420,640 participants with fatty liver from Meinian Health Care Center. We used random forest, elastic net (EN), and extreme gradient boosting ML algorithms to select important features from potential predictors. Features acknowledged by all 3 models were enrolled in logistic regression analysis to develop a carotid plaque prediction model. Model performance was evaluated based on the area under the receiver operating characteristic curve, calibration curve, Brier score, and decision curve analysis both in a randomly split internal validation data set, and an external validation data set comprising 32,682 participants from MJ Health Check-up Center. Risk cutoff points for carotid plaque were determined based on the Youden index, predicted probability distribution, and prevalence rate of the internal validation data set to classify participants into high-, intermediate-, and low-risk groups. This risk classification was further validated in the external validation data set.Among the participants, 26.23% (1,421,970/5,420,640) were diagnosed with carotid plaque in the development data set, and 21.64% (7074/32,682) were diagnosed in the external validation data set. A total of 6 features, including age, systolic blood pressure, low-density lipoprotein cholesterol (LDL-C), total cholesterol, fasting blood glucose, and hepatic steatosis index (HSI) were collectively selected by all 3 ML models out of 27 predictors. After eliminating the issue of collinearity between features, the logistic regression model established with the 5 independent predictors reached an area under the curve of 0.831 in the internal validation data set and 0.801 in the external validation data set, and showed good calibration capability graphically. Its predictive performance was comprehensively competitive compared with the single use of either logistic regression or ML algorithms. Optimal predicted probability cutoff points of 25% and 65% were determined for classifying individuals into low-, intermediate-, and high-risk categories for carotid plaque.The combination of ML and logistic regression yielded a practical carotid plaque prediction model, and was of great public health implications in the early identification and risk assessment of carotid plaque among individuals with fatty liver.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周同学发布了新的文献求助10
2秒前
追寻澜完成签到 ,获得积分10
3秒前
HJY完成签到 ,获得积分10
3秒前
move完成签到,获得积分10
3秒前
123jopop完成签到,获得积分10
5秒前
踏实的敏完成签到,获得积分10
6秒前
6秒前
pinghu完成签到,获得积分10
8秒前
123完成签到,获得积分10
8秒前
LRW发布了新的文献求助10
10秒前
魏海鑫完成签到,获得积分20
10秒前
宁静致远完成签到,获得积分10
11秒前
顾矜应助光亮小蚂蚁采纳,获得30
11秒前
胜天半子应助小鱼鱼Fish采纳,获得10
11秒前
朴实海亦完成签到,获得积分10
13秒前
老实铁身完成签到,获得积分10
13秒前
14秒前
科研通AI2S应助画风湖湘卷采纳,获得10
15秒前
苏苏发布了新的文献求助10
15秒前
JamesPei应助ccc采纳,获得10
17秒前
orixero应助黄小佳采纳,获得10
17秒前
沉静方盒发布了新的文献求助10
19秒前
小鱼鱼Fish完成签到,获得积分10
21秒前
pawpaw009完成签到,获得积分10
22秒前
FashionBoy应助苏和杨采纳,获得10
23秒前
WANG发布了新的文献求助10
24秒前
情怀应助苏苏采纳,获得10
25秒前
fafachoi完成签到,获得积分10
27秒前
27秒前
打野完成签到,获得积分10
27秒前
大侠发布了新的文献求助10
28秒前
善学以致用应助LRW采纳,获得10
28秒前
南风应助研友_LOqqmZ采纳,获得10
28秒前
orixero应助小李采纳,获得10
30秒前
hxh发布了新的文献求助10
31秒前
33秒前
songlin_0011完成签到,获得积分10
35秒前
领导范儿应助任性的咖啡采纳,获得10
35秒前
科研通AI2S应助shixiong采纳,获得10
38秒前
38秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3393922
求助须知:如何正确求助?哪些是违规求助? 3004338
关于积分的说明 8813239
捐赠科研通 2690971
什么是DOI,文献DOI怎么找? 1474092
科研通“疑难数据库(出版商)”最低求助积分说明 681750
邀请新用户注册赠送积分活动 674857