CCAFusion: Cross-Modal Coordinate Attention Network for Infrared and Visible Image Fusion

图像融合 计算机科学 人工智能 计算机视觉 融合 特征(语言学) 图像(数学) 模式识别(心理学) 语言学 哲学
作者
Xiaoling Li,Yanfeng Li,Houjin Chen,Yahui Peng,Pan Pan
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 866-881 被引量:3
标识
DOI:10.1109/tcsvt.2023.3293228
摘要

Infrared and visible image fusion aims to generate one image with comprehensive information. It can maintain rich texture characteristics and thermal information. However, for existing image fusion methods, the fused images either sacrifice the salience of thermal targets and the richness of textures or introduce the interference of useless information like artifacts. To alleviate these problems, an effective cross-modal coordinate attention network for infrared and visible image fusion called CCAFusion is proposed in this paper. To fully integrate complementary features, the cross-modal image fusion strategy based on coordinate attention is designed, which consists of the feature-awareness fusion module and the feature-enhancement fusion module. Moreover, a multiscale skip connection-based network is employed to obtain multiscale features in the infrared image and the visible image, which can fully utilize the multi-level information in the fusion process. To reduce the discrepancy between the fused image and the input images, a multiple constrained loss function including the base loss and the auxiliary loss is developed to adjust the gray-level distribution and ensure the harmonious coexistence of structure and intensity in fused images, thereby preventing the pollution of useless information like artifacts. Extensive experiments conducted on widely used datasets demonstrate that our CCAFusion achieves superior performance over state-of-the-art image fusion methods in both qualitative evaluation and quantitative measurement. Furthermore, the application to salient object detection reveals the potential of our CCAFusion for high-level vision tasks, which can effectively boost the detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
flora发布了新的文献求助10
1秒前
坚强的代曼完成签到,获得积分10
1秒前
赘婿应助张兮兮采纳,获得10
2秒前
2秒前
Rohee发布了新的文献求助10
2秒前
大布发布了新的文献求助20
3秒前
从容芮应助科研通管家采纳,获得10
4秒前
甜甜玫瑰应助科研通管家采纳,获得10
4秒前
从容芮应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得150
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
从容芮应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
5秒前
从容芮应助科研通管家采纳,获得10
5秒前
甜甜玫瑰应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
feb完成签到,获得积分10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
从容芮应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
甜甜玫瑰应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
哦NO完成签到,获得积分10
7秒前
江停完成签到,获得积分10
8秒前
8秒前
YY发布了新的文献求助10
9秒前
LLLL发布了新的文献求助10
9秒前
10秒前
10秒前
领导范儿应助SONG采纳,获得10
11秒前
aaronzhu1995完成签到 ,获得积分10
11秒前
11秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161577
求助须知:如何正确求助?哪些是违规求助? 2812863
关于积分的说明 7897487
捐赠科研通 2471775
什么是DOI,文献DOI怎么找? 1316151
科研通“疑难数据库(出版商)”最低求助积分说明 631219
版权声明 602112