Integrated intelligent fault diagnosis approach of offshore wind turbine bearing based on information stream fusion and semi-supervised learning

涡轮机 计算机科学 风力发电 海上风力发电 断层(地质) 传感器融合 状态监测 监督学习 实时计算 人工智能 人工神经网络 工程类 地质学 机械工程 电气工程 地震学
作者
Yongchao Zhang,Kun Yu,Zihao Lei,Jian Ge,Yadong Xu,Zhixiong Li,Zhaohui Ren,Ke Feng
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:232: 120854-120854 被引量:48
标识
DOI:10.1016/j.eswa.2023.120854
摘要

Offshore wind turbines play a vital role in transferring wind energy to electricity, which could help relieve the energy crisis and improve the global climate. In general, offshore wind turbines are installed open sea to avoid the potential interruption of people’s daily life. In such kind of harsh operating environment, the wind turbine transmission system is prone to failure, especially for the rolling bearings. Therefore, it is crucial to conduct condition monitoring of rolling bearings to ensure the safe and efficient operation of offshore wind turbines. Intelligent fault diagnosis is a research hotspot for condition monitoring of rolling bearings. However, the existing intelligent fault diagnosis techniques have some limitations. For example, most of the existing techniques were developed based on single sensory data, which can lead to inaccurate and unstable diagnostic results. Moreover, most existing techniques implicitly assume that there are sufficient labeled samples for classifier training. This may not be the case for offshore wind turbines where the labeled samples are limited. To address the aforementioned issues, an intelligent fault diagnosis technique by integrating an information stream fusion and a semi-supervised learning approach is proposed in this study. In the proposed method, a coupled convolutional residual network is proposed to realize the information streams fusion, in which the vibration signal and acoustic emission signal are served as the inputs of the proposed network, and then a concatenation operation is used to fuse the features obtained from two information streams. Meanwhile, a semi-supervised learning approach is also proposed, which can utilize the labeled samples, the correctly predicted samples, and the unlabeled samples to improve diagnostic accuracy. The diagnostic result on the experimental offshore wind turbine bearing dataset demonstrates that the proposed method achieves the highest diagnostic accuracy compared to existing comparative methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TheSilencer完成签到 ,获得积分10
1秒前
WXL完成签到,获得积分10
1秒前
1秒前
思源应助浅希忆辰采纳,获得10
1秒前
悦耳雁山发布了新的文献求助10
4秒前
老徐发布了新的文献求助10
4秒前
英俊的铭应助花生日记采纳,获得10
4秒前
时尚水绿发布了新的文献求助10
5秒前
爆米花应助尹焱采纳,获得10
5秒前
辛勤的擎宇完成签到,获得积分10
6秒前
7秒前
llcllc发布了新的文献求助10
7秒前
wynter完成签到 ,获得积分10
8秒前
冷酷豌豆完成签到,获得积分10
8秒前
baocq完成签到,获得积分10
8秒前
10秒前
WXL发布了新的文献求助10
10秒前
香蕉觅云应助欢佳欢采纳,获得10
11秒前
慕青应助老徐采纳,获得10
12秒前
长乐发布了新的文献求助30
13秒前
yuzuru完成签到,获得积分10
13秒前
冂xx易云发布了新的文献求助10
14秒前
可爱的函函应助小小采纳,获得20
14秒前
自信紫青完成签到,获得积分10
15秒前
zsy发布了新的文献求助10
15秒前
17秒前
昏睡的蟠桃应助CATH采纳,获得10
17秒前
自信项链应助llcllc采纳,获得10
17秒前
熠旅完成签到,获得积分10
18秒前
shanganjie发布了新的文献求助10
19秒前
yangjian完成签到 ,获得积分10
20秒前
JIAO完成签到,获得积分10
22秒前
传奇3应助称心秀采纳,获得10
22秒前
阿杰发布了新的文献求助30
24秒前
冂xx易云完成签到,获得积分10
25秒前
736550205完成签到,获得积分10
26秒前
天真问筠发布了新的文献求助20
27秒前
自信紫青发布了新的文献求助10
29秒前
Hello应助嘻嘻嘻嗨学习采纳,获得10
29秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3585095
求助须知:如何正确求助?哪些是违规求助? 3154094
关于积分的说明 9499940
捐赠科研通 2856781
什么是DOI,文献DOI怎么找? 1570195
邀请新用户注册赠送积分活动 736012
科研通“疑难数据库(出版商)”最低求助积分说明 721502