亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An ensemble CNN-LSTM and GRU adaptive weighting model based improved sparrow search algorithm for predicting runoff using historical meteorological and runoff data as input

加权 地表径流 反距离权重法 计算机科学 算法 卷积神经网络 时间序列 人工智能 数据挖掘 机器学习 计算机视觉 多元插值 生态学 双线性插值 放射科 生物 医学
作者
Zhiyuan Yao,Zhaocai Wang,Dangwei Wang,Tunhua Wu,Lingxuan Chen
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:625: 129977-129977 被引量:58
标识
DOI:10.1016/j.jhydrol.2023.129977
摘要

Accurate prediction of river runoff is of great significance for water resources management, flood prevention and mitigation. The causes of runoff are complex and the mechanisms behind them are difficult to grasp. Building a data-driven deep learning model for runoff prediction is an effective solution. To achieve the fusion of multi-source information, prediction accuracy and wide applicability, a hybrid model based on CNN-LSTM & GRU-ISSA is proposed in this study. In this paper, meteorological data, hydrological data and runoff data are selected and the maximum information coefficient (MIC) is used to calculate the relationship between each variable and runoff in order to reduce the dimensionality of the data. A convolutional neural network (CNN) is used to extract features of the long time series of runoff and a long short-term memory network (LSTM) is used for the prediction of the long time series of runoff. A gated recurrent unit (GRU) is also used for the short time series prediction of runoff. In order to extract the advantages of both prediction models, an adaptive weighting module (AWM) is proposed to dynamically learn the outputs of both models and combine them into the final prediction results. To be able to solve the selection of model hyperparameters, we use the improved sparrow search algorithm (ISSA). This algorithm introduces two improvement points, Lévy Flight and Sine Cosine Algorithm, based on the Sparrow Search Algorithm (SSA), to achieve fast convergence of the algorithm with better global optimal solutions. The proposed model was validated using watersheds with different runoff ranges, e.g., in the Bailong River watershed, the NSE value was 0.90 and the RMSE value was 2.17. The results showed that the proposed model significantly outperformed the other baseline models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
良辰应助科研通管家采纳,获得10
24秒前
28秒前
甜蜜发带完成签到 ,获得积分10
48秒前
1分钟前
执着夏山发布了新的文献求助10
1分钟前
1分钟前
一墨完成签到,获得积分10
1分钟前
1分钟前
清爽夜雪完成签到,获得积分10
1分钟前
从容栾发布了新的文献求助10
1分钟前
科研搬运工完成签到,获得积分10
1分钟前
无花果应助Demi_Ming采纳,获得10
2分钟前
2分钟前
脑洞疼应助科研通管家采纳,获得10
2分钟前
良辰应助科研通管家采纳,获得10
2分钟前
2分钟前
Demi_Ming发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
执着夏山发布了新的文献求助10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
甜梨完成签到,获得积分10
4分钟前
4分钟前
5分钟前
俭朴的大有完成签到,获得积分10
5分钟前
TXZ06完成签到,获得积分10
5分钟前
5分钟前
5分钟前
执着夏山发布了新的文献求助100
5分钟前
5分钟前
CipherSage应助科研通管家采纳,获得10
6分钟前
Z小姐完成签到 ,获得积分10
6分钟前
梨梨lilili完成签到,获得积分20
6分钟前
JamesPei应助cacaldon采纳,获得10
6分钟前
研友_VZG7GZ应助梨梨lilili采纳,获得30
6分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146739
求助须知:如何正确求助?哪些是违规求助? 2798045
关于积分的说明 7826588
捐赠科研通 2454566
什么是DOI,文献DOI怎么找? 1306391
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527