An ensemble CNN-LSTM and GRU adaptive weighting model based improved sparrow search algorithm for predicting runoff using historical meteorological and runoff data as input

加权 地表径流 反距离权重法 计算机科学 算法 卷积神经网络 时间序列 人工智能 数据挖掘 机器学习 计算机视觉 多元插值 生态学 医学 放射科 双线性插值 生物
作者
Zhiyuan Yao,Zhaocai Wang,Dangwei Wang,Tunhua Wu,Lingxuan Chen
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:625: 129977-129977 被引量:89
标识
DOI:10.1016/j.jhydrol.2023.129977
摘要

Accurate prediction of river runoff is of great significance for water resources management, flood prevention and mitigation. The causes of runoff are complex and the mechanisms behind them are difficult to grasp. Building a data-driven deep learning model for runoff prediction is an effective solution. To achieve the fusion of multi-source information, prediction accuracy and wide applicability, a hybrid model based on CNN-LSTM & GRU-ISSA is proposed in this study. In this paper, meteorological data, hydrological data and runoff data are selected and the maximum information coefficient (MIC) is used to calculate the relationship between each variable and runoff in order to reduce the dimensionality of the data. A convolutional neural network (CNN) is used to extract features of the long time series of runoff and a long short-term memory network (LSTM) is used for the prediction of the long time series of runoff. A gated recurrent unit (GRU) is also used for the short time series prediction of runoff. In order to extract the advantages of both prediction models, an adaptive weighting module (AWM) is proposed to dynamically learn the outputs of both models and combine them into the final prediction results. To be able to solve the selection of model hyperparameters, we use the improved sparrow search algorithm (ISSA). This algorithm introduces two improvement points, Lévy Flight and Sine Cosine Algorithm, based on the Sparrow Search Algorithm (SSA), to achieve fast convergence of the algorithm with better global optimal solutions. The proposed model was validated using watersheds with different runoff ranges, e.g., in the Bailong River watershed, the NSE value was 0.90 and the RMSE value was 2.17. The results showed that the proposed model significantly outperformed the other baseline models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Grondwet发布了新的文献求助10
2秒前
3秒前
西小喵发布了新的文献求助10
3秒前
wwl发布了新的文献求助10
4秒前
Notdodead应助希望采纳,获得10
4秒前
科研通AI5应助xyj6486采纳,获得10
4秒前
5秒前
智慧者完成签到,获得积分10
5秒前
zebra8848发布了新的文献求助10
6秒前
6秒前
6秒前
孙燕应助淳于安筠采纳,获得30
7秒前
8秒前
幸福大白发布了新的文献求助30
8秒前
wsj发布了新的文献求助10
10秒前
ZONG发布了新的文献求助20
10秒前
wuy发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
Jun关闭了Jun文献求助
14秒前
星星发布了新的文献求助10
15秒前
17秒前
射天狼发布了新的文献求助10
17秒前
17秒前
17秒前
zebra8848完成签到,获得积分10
17秒前
18秒前
深情安青应助wsj采纳,获得10
18秒前
18秒前
sxy发布了新的文献求助10
19秒前
蔡从安发布了新的文献求助10
20秒前
21秒前
柔弱云朵完成签到,获得积分10
22秒前
22秒前
22秒前
xxddw发布了新的文献求助10
22秒前
Owen应助小晓采纳,获得10
23秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174