A Model for Yield Estimation Based on Sea Buckthorn Images

相关系数 均方误差 产量(工程) 数学 决定系数 统计 冶金 材料科学
作者
Yingjie Du,Hong‐Gang Wang,Chunguang Wang,Chunhui Zhang,Zheying Zong
出处
期刊:Sustainability [MDPI AG]
卷期号:15 (14): 10872-10872 被引量:1
标识
DOI:10.3390/su151410872
摘要

Sea buckthorn is an extremely drought-tolerant, resilient and sustainable crop that can be grown in areas with harsh climates and scarce resources to provide a source of nutrition and income for the local population. The use of image-based yield estimation methods allows for better management of sea buckthorn cultivation to improve its productivity and sustainability, while the error in fruit yield information due to occlusion can be well reduced by combining and analysing the image features extracted using binocular cameras. In this paper, mature wild sea buckthorn in the mountainous areas north of Hohhot City, Inner Mongolia Autonomous Region, were used as the study target. Firstly, complete images of sea buckthorn branches were collected by binocular cameras and features were extracted. The extracted features include the colour index of sea buckthorn fruits, the number of fruits and a total of four texture parameters, ASM, CON, COR and HOM. The features with significant correlation to sea buckthorn fruit weight were selected by correlation calculation of the feature parameters, the obtained correlation features were introduced into the BP neural network model for training and then the sea buckthorn estimation model was obtained. The results showed that the best yield estimation model was achieved by combining the COR index with the colour index and the number of sea buckthorn fruits, with a coefficient of determination R2 = 0.99267 and a root mean square error RMSE = 0.5214.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助啥,这都是啥采纳,获得10
1秒前
辛勤的孤容完成签到,获得积分10
2秒前
2秒前
2秒前
petrichor应助优美的跳跳糖采纳,获得1020
2秒前
科研通AI2S应助fleee采纳,获得10
2秒前
传奇3应助凝子老师采纳,获得10
3秒前
3秒前
3秒前
theverve完成签到,获得积分10
4秒前
ZJW完成签到,获得积分10
4秒前
完美世界应助bitahu采纳,获得10
4秒前
霸王龙完成签到,获得积分10
5秒前
7秒前
8秒前
YYJ25发布了新的文献求助10
8秒前
伯赏诗霜发布了新的文献求助50
9秒前
霸王龙发布了新的文献求助10
9秒前
ZJW发布了新的文献求助10
10秒前
ptjam完成签到 ,获得积分10
11秒前
miss发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
sun发布了新的文献求助10
15秒前
Ava应助土里刨星星的鱼采纳,获得10
17秒前
欢呼冰岚完成签到,获得积分10
17秒前
大王卡发布了新的文献求助30
17秒前
凝子老师发布了新的文献求助10
17秒前
优雅海雪发布了新的文献求助10
19秒前
19秒前
正在获取昵称中...完成签到,获得积分10
21秒前
研白完成签到 ,获得积分10
22秒前
蜜雪冰城完成签到,获得积分10
22秒前
狂歌痛饮空度日完成签到,获得积分10
23秒前
隐形曼青应助侦察兵采纳,获得10
23秒前
欢呼冰岚发布了新的文献求助50
24秒前
陵铛铛铛发布了新的文献求助10
24秒前
搜集达人应助caoyy采纳,获得10
24秒前
YYJ25发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849