A Model for Yield Estimation Based on Sea Buckthorn Images

相关系数 均方误差 产量(工程) 数学 决定系数 统计 冶金 材料科学
作者
Yingjie Du,Hong‐Gang Wang,Chunguang Wang,Chunhui Zhang,Zheying Zong
出处
期刊:Sustainability [MDPI AG]
卷期号:15 (14): 10872-10872 被引量:1
标识
DOI:10.3390/su151410872
摘要

Sea buckthorn is an extremely drought-tolerant, resilient and sustainable crop that can be grown in areas with harsh climates and scarce resources to provide a source of nutrition and income for the local population. The use of image-based yield estimation methods allows for better management of sea buckthorn cultivation to improve its productivity and sustainability, while the error in fruit yield information due to occlusion can be well reduced by combining and analysing the image features extracted using binocular cameras. In this paper, mature wild sea buckthorn in the mountainous areas north of Hohhot City, Inner Mongolia Autonomous Region, were used as the study target. Firstly, complete images of sea buckthorn branches were collected by binocular cameras and features were extracted. The extracted features include the colour index of sea buckthorn fruits, the number of fruits and a total of four texture parameters, ASM, CON, COR and HOM. The features with significant correlation to sea buckthorn fruit weight were selected by correlation calculation of the feature parameters, the obtained correlation features were introduced into the BP neural network model for training and then the sea buckthorn estimation model was obtained. The results showed that the best yield estimation model was achieved by combining the COR index with the colour index and the number of sea buckthorn fruits, with a coefficient of determination R2 = 0.99267 and a root mean square error RMSE = 0.5214.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助30
1秒前
Rainlistener应助小江不饿采纳,获得10
1秒前
977发布了新的文献求助10
1秒前
brj发布了新的文献求助10
1秒前
LUCKY发布了新的文献求助20
2秒前
wop111应助追寻的身影采纳,获得30
2秒前
KK关闭了KK文献求助
2秒前
2秒前
keyan发布了新的文献求助10
3秒前
可以完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
通通发布了新的文献求助10
4秒前
4秒前
salttttt完成签到,获得积分10
4秒前
5秒前
ll发布了新的文献求助10
6秒前
6秒前
许子峻发布了新的文献求助30
7秒前
lilililia发布了新的文献求助10
7秒前
7秒前
lee完成签到 ,获得积分10
7秒前
浅色发布了新的文献求助10
8秒前
汉堡包应助Yidie采纳,获得10
8秒前
8秒前
小蘑菇应助Jankin采纳,获得10
8秒前
Owen应助Zqs采纳,获得10
8秒前
9秒前
10秒前
10秒前
10秒前
开放飞瑶完成签到 ,获得积分20
10秒前
magicyang完成签到,获得积分10
10秒前
默默发布了新的文献求助10
11秒前
含蓄广缘发布了新的文献求助30
11秒前
LXX不钻牛角尖完成签到,获得积分10
11秒前
酸奶鱼鱼完成签到,获得积分10
11秒前
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743323
求助须知:如何正确求助?哪些是违规求助? 5413456
关于积分的说明 15347310
捐赠科研通 4884139
什么是DOI,文献DOI怎么找? 2625595
邀请新用户注册赠送积分活动 1574486
关于科研通互助平台的介绍 1531380