Novel pneumonia score based on a machine learning model for predicting mortality in pneumonia patients on admission to the intensive care unit

医学 肺炎 重症监护室 内科学 重症监护医学 急诊医学
作者
Bin Wang,Yuanxiao Li,Ying Tian,Changxi Ju,Xiaonan Xu,Shufen Pei
出处
期刊:Respiratory Medicine [Elsevier]
卷期号:217: 107363-107363 被引量:11
标识
DOI:10.1016/j.rmed.2023.107363
摘要

Scores for predicting the long-term mortality of severe pneumonia are lacking. The purpose of this study is to use machine learning methods to develop new pneumonia scores to predict the 1-year mortality and hospital mortality of pneumonia patients on admission to the intensive care unit (ICU).The study population was screened from the MIMIC-IV and eICU databases. The main outcomes evaluated were 1-year mortality and hospital mortality in the MIMIC-IV database and hospital mortality in the eICU database. From the full data set, we separated patients diagnosed with community-acquired pneumonia (CAP) and ventilator-associated pneumonia (VAP) for subgroup analysis. We used common shallow machine learning algorithms, including logistic regression, decision tree, random forest, multilayer perceptron and XGBoost.The full data set of the MIMIC-IV database contained 4697 patients, while that of the eICU database contained 13760 patients. We defined a new pneumonia score, the "Integrated CCI-APS", using a multivariate logistic regression model including six variables: metastatic solid tumor, Charlson Comorbidity Index, readmission, congestive heart failure, age, and Acute Physiology Score III. The area under the curve (AUC) and accuracy of the integrated CCI-APS were assessed in three data sets (full, CAP, and VAP) using both the test set derived from the MIMIC-IV database and the external validation set derived from the eICU database. The AUC value ranges in predicting 1-year and hospital mortality were 0.784-0.797 and 0.691-0.780, respectively, and the corresponding accuracy ranges were 0.723-0.725 and 0.641-0.718, respectively.The main contribution of this study was a benchmark for using machine learning models to build pneumonia scores. Based on the idea of integrated learning, we propose a new integrated CCI-APS score for severe pneumonia. In the prediction of 1-year mortality and hospital mortality, our new pneumonia score outperformed the existing score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助正直亦旋采纳,获得10
1秒前
科研通AI5应助jijahui采纳,获得80
2秒前
Jenny应助背后的诺言采纳,获得10
2秒前
木木完成签到,获得积分10
2秒前
赤邪发布了新的文献求助10
2秒前
2秒前
keen完成签到 ,获得积分10
2秒前
et完成签到,获得积分10
3秒前
桂魄完成签到,获得积分10
3秒前
3秒前
4秒前
wang发布了新的文献求助200
5秒前
5秒前
5秒前
英姑应助snowdrift采纳,获得10
5秒前
5秒前
5秒前
jy完成签到 ,获得积分10
5秒前
NexusExplorer应助立马毕业采纳,获得10
6秒前
在水一方应助123采纳,获得10
7秒前
科目三应助白华苍松采纳,获得10
8秒前
通~发布了新的文献求助10
8秒前
CipherSage应助千幻采纳,获得10
8秒前
8秒前
dddddd完成签到,获得积分10
8秒前
桂魄发布了新的文献求助10
8秒前
年轻的咖啡豆完成签到,获得积分20
9秒前
9秒前
绿洲发布了新的文献求助10
9秒前
9秒前
10秒前
aDou完成签到 ,获得积分10
10秒前
脑洞疼应助bc采纳,获得10
10秒前
NEMO发布了新的文献求助10
10秒前
李健应助mammoth采纳,获得20
10秒前
熊boy发布了新的文献求助10
10秒前
天真思雁发布了新的文献求助10
10秒前
11秒前
情怀应助蔡蔡不菜菜采纳,获得10
11秒前
shouyu29应助MADKAI采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762