Novel pneumonia score based on a machine learning model for predicting mortality in pneumonia patients on admission to the intensive care unit

医学 肺炎 重症监护室 内科学 重症监护医学 急诊医学
作者
Bin Wang,Yuanxiao Li,Ying Tian,Changxi Ju,Xiaonan Xu,Shufen Pei
出处
期刊:Respiratory Medicine [Elsevier BV]
卷期号:217: 107363-107363 被引量:20
标识
DOI:10.1016/j.rmed.2023.107363
摘要

Scores for predicting the long-term mortality of severe pneumonia are lacking. The purpose of this study is to use machine learning methods to develop new pneumonia scores to predict the 1-year mortality and hospital mortality of pneumonia patients on admission to the intensive care unit (ICU).The study population was screened from the MIMIC-IV and eICU databases. The main outcomes evaluated were 1-year mortality and hospital mortality in the MIMIC-IV database and hospital mortality in the eICU database. From the full data set, we separated patients diagnosed with community-acquired pneumonia (CAP) and ventilator-associated pneumonia (VAP) for subgroup analysis. We used common shallow machine learning algorithms, including logistic regression, decision tree, random forest, multilayer perceptron and XGBoost.The full data set of the MIMIC-IV database contained 4697 patients, while that of the eICU database contained 13760 patients. We defined a new pneumonia score, the "Integrated CCI-APS", using a multivariate logistic regression model including six variables: metastatic solid tumor, Charlson Comorbidity Index, readmission, congestive heart failure, age, and Acute Physiology Score III. The area under the curve (AUC) and accuracy of the integrated CCI-APS were assessed in three data sets (full, CAP, and VAP) using both the test set derived from the MIMIC-IV database and the external validation set derived from the eICU database. The AUC value ranges in predicting 1-year and hospital mortality were 0.784-0.797 and 0.691-0.780, respectively, and the corresponding accuracy ranges were 0.723-0.725 and 0.641-0.718, respectively.The main contribution of this study was a benchmark for using machine learning models to build pneumonia scores. Based on the idea of integrated learning, we propose a new integrated CCI-APS score for severe pneumonia. In the prediction of 1-year mortality and hospital mortality, our new pneumonia score outperformed the existing score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冬雪丶消融应助hhh采纳,获得10
刚刚
橘子发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
爱你哦发布了新的文献求助10
1秒前
btsforever完成签到 ,获得积分10
1秒前
甜甜晓露完成签到 ,获得积分10
1秒前
2秒前
哈哈发布了新的文献求助10
2秒前
pain豆先生完成签到 ,获得积分10
3秒前
机灵水卉发布了新的文献求助10
3秒前
田様应助qingzx采纳,获得30
3秒前
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
曾泰平发布了新的文献求助10
6秒前
蒺藜完成签到,获得积分10
6秒前
Hypnos发布了新的文献求助10
6秒前
7秒前
李爱国应助tan采纳,获得10
7秒前
7秒前
科研小白发布了新的文献求助30
8秒前
8秒前
爱你哦完成签到,获得积分10
8秒前
Picopy完成签到,获得积分10
8秒前
zhw发布了新的文献求助10
9秒前
汪何伟发布了新的文献求助10
9秒前
9秒前
9秒前
晓晓来了发布了新的文献求助150
10秒前
10秒前
10秒前
11秒前
猪米妮发布了新的文献求助10
11秒前
11秒前
望空发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4992878
求助须知:如何正确求助?哪些是违规求助? 4240810
关于积分的说明 13212439
捐赠科研通 4036159
什么是DOI,文献DOI怎么找? 2208306
邀请新用户注册赠送积分活动 1219242
关于科研通互助平台的介绍 1137557