亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Novel pneumonia score based on a machine learning model for predicting mortality in pneumonia patients on admission to the intensive care unit

医学 肺炎 重症监护室 内科学 重症监护医学 急诊医学
作者
Bin Wang,Yuanxiao Li,Ying Tian,Changxi Ju,Xiaonan Xu,Shufen Pei
出处
期刊:Respiratory Medicine [Elsevier]
卷期号:217: 107363-107363 被引量:20
标识
DOI:10.1016/j.rmed.2023.107363
摘要

Scores for predicting the long-term mortality of severe pneumonia are lacking. The purpose of this study is to use machine learning methods to develop new pneumonia scores to predict the 1-year mortality and hospital mortality of pneumonia patients on admission to the intensive care unit (ICU).The study population was screened from the MIMIC-IV and eICU databases. The main outcomes evaluated were 1-year mortality and hospital mortality in the MIMIC-IV database and hospital mortality in the eICU database. From the full data set, we separated patients diagnosed with community-acquired pneumonia (CAP) and ventilator-associated pneumonia (VAP) for subgroup analysis. We used common shallow machine learning algorithms, including logistic regression, decision tree, random forest, multilayer perceptron and XGBoost.The full data set of the MIMIC-IV database contained 4697 patients, while that of the eICU database contained 13760 patients. We defined a new pneumonia score, the "Integrated CCI-APS", using a multivariate logistic regression model including six variables: metastatic solid tumor, Charlson Comorbidity Index, readmission, congestive heart failure, age, and Acute Physiology Score III. The area under the curve (AUC) and accuracy of the integrated CCI-APS were assessed in three data sets (full, CAP, and VAP) using both the test set derived from the MIMIC-IV database and the external validation set derived from the eICU database. The AUC value ranges in predicting 1-year and hospital mortality were 0.784-0.797 and 0.691-0.780, respectively, and the corresponding accuracy ranges were 0.723-0.725 and 0.641-0.718, respectively.The main contribution of this study was a benchmark for using machine learning models to build pneumonia scores. Based on the idea of integrated learning, we propose a new integrated CCI-APS score for severe pneumonia. In the prediction of 1-year mortality and hospital mortality, our new pneumonia score outperformed the existing score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
32秒前
Frecklesss发布了新的文献求助10
37秒前
Frecklesss完成签到,获得积分20
50秒前
Koi关闭了Koi文献求助
58秒前
1分钟前
1分钟前
么西么西发布了新的文献求助10
1分钟前
Double发布了新的文献求助10
1分钟前
所所应助罗乐天采纳,获得10
1分钟前
冷傲半邪完成签到,获得积分10
2分钟前
yf完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
yf发布了新的文献求助10
3分钟前
Criminology34应助兼听则明采纳,获得30
4分钟前
是菜狗子啊完成签到,获得积分10
4分钟前
nicolaslcq完成签到,获得积分0
4分钟前
语嘘嘘完成签到,获得积分10
5分钟前
laa完成签到,获得积分20
5分钟前
laa发布了新的文献求助10
5分钟前
Anthonywll完成签到 ,获得积分10
5分钟前
Orange应助科研通管家采纳,获得10
6分钟前
MchemG应助科研通管家采纳,获得30
6分钟前
6分钟前
美好灵寒完成签到 ,获得积分10
6分钟前
SciGPT应助小东西采纳,获得10
6分钟前
6分钟前
轻松戎发布了新的文献求助10
6分钟前
烟花应助轻松戎采纳,获得10
6分钟前
思源应助DonglinHe采纳,获得10
6分钟前
7分钟前
DonglinHe发布了新的文献求助10
7分钟前
7分钟前
MchemG应助科研通管家采纳,获得30
8分钟前
打打应助Kypsi采纳,获得30
8分钟前
9分钟前
简单思萱发布了新的文献求助10
9分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346788
求助须知:如何正确求助?哪些是违规求助? 4481194
关于积分的说明 13947357
捐赠科研通 4379190
什么是DOI,文献DOI怎么找? 2406216
邀请新用户注册赠送积分活动 1398779
关于科研通互助平台的介绍 1371693