清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Novel pneumonia score based on a machine learning model for predicting mortality in pneumonia patients on admission to the intensive care unit

医学 肺炎 重症监护室 内科学 重症监护医学 急诊医学
作者
Bin Wang,Yuanxiao Li,Ying Tian,Changxi Ju,Xiaonan Xu,Shufen Pei
出处
期刊:Respiratory Medicine [Elsevier]
卷期号:217: 107363-107363 被引量:9
标识
DOI:10.1016/j.rmed.2023.107363
摘要

Scores for predicting the long-term mortality of severe pneumonia are lacking. The purpose of this study is to use machine learning methods to develop new pneumonia scores to predict the 1-year mortality and hospital mortality of pneumonia patients on admission to the intensive care unit (ICU).The study population was screened from the MIMIC-IV and eICU databases. The main outcomes evaluated were 1-year mortality and hospital mortality in the MIMIC-IV database and hospital mortality in the eICU database. From the full data set, we separated patients diagnosed with community-acquired pneumonia (CAP) and ventilator-associated pneumonia (VAP) for subgroup analysis. We used common shallow machine learning algorithms, including logistic regression, decision tree, random forest, multilayer perceptron and XGBoost.The full data set of the MIMIC-IV database contained 4697 patients, while that of the eICU database contained 13760 patients. We defined a new pneumonia score, the "Integrated CCI-APS", using a multivariate logistic regression model including six variables: metastatic solid tumor, Charlson Comorbidity Index, readmission, congestive heart failure, age, and Acute Physiology Score III. The area under the curve (AUC) and accuracy of the integrated CCI-APS were assessed in three data sets (full, CAP, and VAP) using both the test set derived from the MIMIC-IV database and the external validation set derived from the eICU database. The AUC value ranges in predicting 1-year and hospital mortality were 0.784-0.797 and 0.691-0.780, respectively, and the corresponding accuracy ranges were 0.723-0.725 and 0.641-0.718, respectively.The main contribution of this study was a benchmark for using machine learning models to build pneumonia scores. Based on the idea of integrated learning, we propose a new integrated CCI-APS score for severe pneumonia. In the prediction of 1-year mortality and hospital mortality, our new pneumonia score outperformed the existing score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bzdjsmw完成签到 ,获得积分10
17秒前
菠萝炒蛋加饭完成签到 ,获得积分10
39秒前
酷波er应助帮帮我好吗采纳,获得10
52秒前
oaoalaa完成签到 ,获得积分10
1分钟前
Garrett完成签到 ,获得积分10
1分钟前
guoxingliu完成签到,获得积分10
1分钟前
大熊完成签到 ,获得积分10
1分钟前
bing完成签到 ,获得积分10
1分钟前
woxinyouyou完成签到,获得积分0
2分钟前
orixero应助帮帮我好吗采纳,获得10
2分钟前
SWIM666完成签到,获得积分10
2分钟前
果酱完成签到,获得积分10
2分钟前
2分钟前
huanghe完成签到,获得积分10
3分钟前
Owen应助帮帮我好吗采纳,获得10
3分钟前
数乱了梨花完成签到 ,获得积分10
3分钟前
南风完成签到 ,获得积分10
3分钟前
nano完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
草木发布了新的文献求助10
3分钟前
3分钟前
Singularity举报坏蛋冒险家求助涉嫌违规
3分钟前
4分钟前
啵啵只因完成签到,获得积分10
4分钟前
万能图书馆应助天涯眷客采纳,获得10
4分钟前
lixuebin完成签到 ,获得积分10
5分钟前
5分钟前
姚芭蕉完成签到 ,获得积分0
5分钟前
大模型应助帮帮我好吗采纳,获得10
5分钟前
草木发布了新的文献求助10
5分钟前
明朗完成签到 ,获得积分10
5分钟前
lll发布了新的文献求助10
6分钟前
粗心的荷花完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137034
求助须知:如何正确求助?哪些是违规求助? 2788014
关于积分的说明 7784270
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625522
版权声明 600999