Novel pneumonia score based on a machine learning model for predicting mortality in pneumonia patients on admission to the intensive care unit

医学 肺炎 重症监护室 内科学 重症监护医学 急诊医学
作者
Bin Wang,Yuanxiao Li,Ying Tian,Changxi Ju,Xiaonan Xu,Shufen Pei
出处
期刊:Respiratory Medicine [Elsevier BV]
卷期号:217: 107363-107363 被引量:18
标识
DOI:10.1016/j.rmed.2023.107363
摘要

Scores for predicting the long-term mortality of severe pneumonia are lacking. The purpose of this study is to use machine learning methods to develop new pneumonia scores to predict the 1-year mortality and hospital mortality of pneumonia patients on admission to the intensive care unit (ICU).The study population was screened from the MIMIC-IV and eICU databases. The main outcomes evaluated were 1-year mortality and hospital mortality in the MIMIC-IV database and hospital mortality in the eICU database. From the full data set, we separated patients diagnosed with community-acquired pneumonia (CAP) and ventilator-associated pneumonia (VAP) for subgroup analysis. We used common shallow machine learning algorithms, including logistic regression, decision tree, random forest, multilayer perceptron and XGBoost.The full data set of the MIMIC-IV database contained 4697 patients, while that of the eICU database contained 13760 patients. We defined a new pneumonia score, the "Integrated CCI-APS", using a multivariate logistic regression model including six variables: metastatic solid tumor, Charlson Comorbidity Index, readmission, congestive heart failure, age, and Acute Physiology Score III. The area under the curve (AUC) and accuracy of the integrated CCI-APS were assessed in three data sets (full, CAP, and VAP) using both the test set derived from the MIMIC-IV database and the external validation set derived from the eICU database. The AUC value ranges in predicting 1-year and hospital mortality were 0.784-0.797 and 0.691-0.780, respectively, and the corresponding accuracy ranges were 0.723-0.725 and 0.641-0.718, respectively.The main contribution of this study was a benchmark for using machine learning models to build pneumonia scores. Based on the idea of integrated learning, we propose a new integrated CCI-APS score for severe pneumonia. In the prediction of 1-year mortality and hospital mortality, our new pneumonia score outperformed the existing score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心冷霜发布了新的文献求助10
2秒前
3秒前
奇异果完成签到,获得积分10
3秒前
科目三应助MS903采纳,获得10
4秒前
哈哈哈哈哈完成签到,获得积分10
4秒前
伶俐雨泽发布了新的文献求助10
4秒前
一文字豪树完成签到,获得积分10
5秒前
JamesPei应助义气的慕卉采纳,获得10
6秒前
9秒前
KSDalton完成签到,获得积分10
12秒前
13秒前
18秒前
红宝完成签到,获得积分10
18秒前
Akim应助皓月星辰采纳,获得10
18秒前
spp完成签到 ,获得积分0
18秒前
18秒前
知之发布了新的文献求助10
19秒前
浮浮世世发布了新的文献求助10
19秒前
周周完成签到,获得积分10
20秒前
伶俐雨泽完成签到,获得积分10
20秒前
自觉的凛发布了新的文献求助10
23秒前
23秒前
ss发布了新的文献求助10
24秒前
shinysparrow完成签到,获得积分0
25秒前
26秒前
林林完成签到 ,获得积分10
26秒前
bkagyin应助leo采纳,获得10
26秒前
Ni驳回了小二郎应助
27秒前
Lucas应助爱撒娇的紫菜采纳,获得10
27秒前
28秒前
MS903发布了新的文献求助10
28秒前
路漫漫123完成签到,获得积分10
29秒前
29秒前
爆米花应助南山无梅落采纳,获得10
29秒前
yml完成签到 ,获得积分10
30秒前
红宝发布了新的文献求助30
30秒前
阿克图尔斯·蒙斯克完成签到,获得积分10
32秒前
皓月星辰发布了新的文献求助10
32秒前
负责玉米发布了新的文献求助10
33秒前
领导范儿应助读博小菜菜采纳,获得10
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508495
关于积分的说明 11141261
捐赠科研通 3241177
什么是DOI,文献DOI怎么找? 1791399
邀请新用户注册赠送积分活动 872861
科研通“疑难数据库(出版商)”最低求助积分说明 803396