亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Expert-level pediatric brain tumor segmentation in a limited data scenario with stepwise transfer learning

人工智能 医学 机器学习 深度学习 分割 标杆管理 学习迁移 医学物理学 计算机科学 营销 业务
作者
Aidan Boyd,Zezhong Ye,Sanjay P. Prabhu,Michael C. Tjong,Yining Zha,Sridhar Vajapeyam,Hasaan Hayat,Rishi Chopra,Kevin Liu,Ali Nabavizadeh,Adam Resnick,Sabine Mueller,Daphne A. Haas‐Kogan,Hugo J.W.L. Aerts,Tina Young Poussaint,Benjamin H. Kann
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:1
标识
DOI:10.1101/2023.06.29.23292048
摘要

ABSTRACT Purpose Artificial intelligence (AI)-automated tumor delineation for pediatric gliomas would enable real-time volumetric evaluation to support diagnosis, treatment response assessment, and clinical decision-making. Auto-segmentation algorithms for pediatric tumors are rare, due to limited data availability, and algorithms have yet to demonstrate clinical translation. Methods We leveraged two datasets from a national brain tumor consortium (n=184) and a pediatric cancer center (n=100) to develop, externally validate, and clinically benchmark deep learning neural networks for pediatric low-grade glioma (pLGG) segmentation using a novel in-domain, stepwise transfer learning approach. The best model [via Dice similarity coefficient (DSC)] was externally validated and subject to randomized, blinded evaluation by three expert clinicians wherein clinicians assessed clinical acceptability of expert- and AI-generated segmentations via 10-point Likert scales and Turing tests. Results The best AI model utilized in-domain, stepwise transfer learning (median DSC: 0.877 [IQR 0.715-0.914]) versus baseline model (median DSC 0.812 [IQR 0.559-0.888]; p <0.05). On external testing (n=60), the AI model yielded accuracy comparable to inter-expert agreement (median DSC: 0.834 [IQR 0.726-0.901] vs. 0.861 [IQR 0.795-0.905], p =0.13). On clinical benchmarking (n=100 scans, 300 segmentations from 3 experts), the experts rated the AI model higher on average compared to other experts (median Likert rating: 9 [IQR 7-9]) vs. 7 [IQR 7-9], p <0.05 for each). Additionally, the AI segmentations had significantly higher ( p <0.05) overall acceptability compared to experts on average (80.2% vs. 65.4%). Experts correctly predicted the origins of AI segmentations in an average of 26.0% of cases. Conclusions Stepwise transfer learning enabled expert-level, automated pediatric brain tumor auto-segmentation and volumetric measurement with a high level of clinical acceptability. This approach may enable development and translation of AI imaging segmentation algorithms in limited data scenarios. Summary Authors proposed and utilized a novel stepwise transfer learning approach to develop and externally validate a deep learning auto-segmentation model for pediatric low-grade glioma whose performance and clinical acceptability were on par with pediatric neuroradiologists and radiation oncologists. Key Points There are limited imaging data available to train deep learning tumor segmentation for pediatric brain tumors, and adult-centric models generalize poorly in the pediatric setting. Stepwise transfer learning demonstrated gains in deep learning segmentation performance (Dice score: 0.877 [IQR 0.715-0.914]) compared to other methodologies and yielded segmentation accuracy comparable to human experts on external validation. On blinded clinical acceptability testing, the model received higher average Likert score rating and clinical acceptability compared to other experts ( Transfer-Encoder model vs. average expert: 80.2% vs. 65.4%) Turing tests showed uniformly low ability of experts’ ability to correctly identify the origins of Transfer-Encoder model segmentations as AI-generated versus human-generated (mean accuracy: 26%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助samera采纳,获得10
1秒前
5秒前
9秒前
JamesPei应助LANER采纳,获得10
10秒前
11秒前
16秒前
自由语兰完成签到,获得积分20
19秒前
自由语兰发布了新的文献求助10
21秒前
keyanzhang完成签到 ,获得积分10
22秒前
Xielin完成签到,获得积分10
25秒前
25秒前
重医怪0发布了新的文献求助10
30秒前
badyoungboy完成签到,获得积分10
31秒前
Dory完成签到,获得积分10
31秒前
32秒前
34秒前
34秒前
cctv18应助badyoungboy采纳,获得20
36秒前
Ava应助Quinta采纳,获得10
37秒前
samera发布了新的文献求助10
37秒前
zhangcycy发布了新的文献求助10
38秒前
君子不器完成签到 ,获得积分10
38秒前
俏皮的安萱完成签到 ,获得积分10
40秒前
41秒前
samera完成签到,获得积分10
43秒前
蓝莓酱蘸橘子完成签到 ,获得积分10
45秒前
45秒前
LANER发布了新的文献求助10
48秒前
Quinta完成签到,获得积分10
49秒前
爱笑的大白菜完成签到 ,获得积分10
51秒前
Quinta发布了新的文献求助10
51秒前
极地东风完成签到,获得积分10
51秒前
55秒前
米博士完成签到,获得积分10
58秒前
懵懂的映菱完成签到,获得积分10
1分钟前
极地东风发布了新的文献求助10
1分钟前
Qiqinnn完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
拾陆完成签到,获得积分20
1分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422815
求助须知:如何正确求助?哪些是违规求助? 3023198
关于积分的说明 8903739
捐赠科研通 2710571
什么是DOI,文献DOI怎么找? 1486572
科研通“疑难数据库(出版商)”最低求助积分说明 687093
邀请新用户注册赠送积分活动 682330