Fast Continual Multi-View Clustering With Incomplete Views

聚类分析 可扩展性 计算机科学 完整信息 趋同(经济学) 利用 稀疏矩阵 数据挖掘 理论计算机科学 机器学习 数据库 数学 物理 计算机安全 数理经济学 量子力学 经济 高斯分布 经济增长
作者
Xinhang Wan,Bin Xiao,Xinwang Liu,Jiyuan Liu,Weixuan Liang,En Zhu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2995-3008 被引量:10
标识
DOI:10.1109/tip.2024.3388974
摘要

Multi-view clustering (MVC) has attracted broad attention due to its capacity to exploit consistent and complementary information across views. This paper focuses on a challenging issue in MVC called the incomplete continual data problem (ICDP). Specifically, most existing algorithms assume that views are available in advance and overlook the scenarios where data observations of views are accumulated over time. Due to privacy considerations or memory limitations, previous views cannot be stored in these situations. Some works have proposed ways to handle this problem, but all of them fail to address incomplete views. Such an incomplete continual data problem (ICDP) in MVC is difficult to solve since incomplete information with continual data increases the difficulty of extracting consistent and complementary knowledge among views. We propose Fast Continual Multi-View Clustering with Incomplete Views (FCMVC-IV) to address this issue. Specifically, the method maintains a scalable consensus coefficient matrix and updates its knowledge with the incoming incomplete view rather than storing and recomputing all the data matrices. Considering that the given views are incomplete, the newly collected view might contain samples that have yet to appear; two indicator matrices and a rotation matrix are developed to match matrices with different dimensions. In addition, we design a three-step iterative algorithm to solve the resultant problem with linear complexity and proven convergence. Comprehensive experiments conducted on various datasets demonstrate the superiority of FCMVC-IV over the competing approaches. The code is publicly available at https://github.com/wanxinhang/FCMVC-IV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助fishway采纳,获得10
1秒前
blue发布了新的文献求助10
2秒前
大气寻真发布了新的文献求助10
2秒前
2秒前
善良的樱完成签到 ,获得积分10
3秒前
尊敬的莹完成签到,获得积分10
4秒前
九方完成签到,获得积分10
4秒前
6秒前
唠叨的逍遥关注了科研通微信公众号
6秒前
cc发布了新的文献求助10
8秒前
8秒前
再见不难完成签到,获得积分10
9秒前
狗十七发布了新的文献求助10
10秒前
10秒前
xuuuuumin完成签到,获得积分10
11秒前
dzdznb完成签到,获得积分20
11秒前
飞飞完成签到,获得积分10
11秒前
WB87应助浆酱子采纳,获得10
11秒前
Gabriel发布了新的文献求助10
12秒前
yu发布了新的文献求助10
12秒前
fishway发布了新的文献求助10
12秒前
13秒前
14秒前
林夕发布了新的文献求助10
14秒前
16秒前
blue完成签到,获得积分10
18秒前
清爽的向南完成签到 ,获得积分10
18秒前
18秒前
lulu发布了新的文献求助10
19秒前
李健应助阳光沛柔采纳,获得10
19秒前
脑洞疼应助李燕伟采纳,获得10
19秒前
深情新之发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
20秒前
宋佳珍完成签到,获得积分10
21秒前
悟空爱吃酥橙完成签到,获得积分10
21秒前
22秒前
李健应助小广采纳,获得10
22秒前
脑洞疼应助橙子0016采纳,获得10
22秒前
小杭76应助angelinazh采纳,获得10
22秒前
哈哈完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430823
求助须知:如何正确求助?哪些是违规求助? 4543941
关于积分的说明 14189780
捐赠科研通 4462379
什么是DOI,文献DOI怎么找? 2446515
邀请新用户注册赠送积分活动 1437962
关于科研通互助平台的介绍 1414553