Fast Continual Multi-View Clustering With Incomplete Views

聚类分析 可扩展性 计算机科学 完整信息 趋同(经济学) 利用 稀疏矩阵 数据挖掘 理论计算机科学 机器学习 数据库 数学 物理 计算机安全 数理经济学 量子力学 经济 高斯分布 经济增长
作者
Xinhang Wan,Bin Xiao,Xinwang Liu,Jiyuan Liu,Weixuan Liang,En Zhu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2995-3008 被引量:10
标识
DOI:10.1109/tip.2024.3388974
摘要

Multi-view clustering (MVC) has attracted broad attention due to its capacity to exploit consistent and complementary information across views. This paper focuses on a challenging issue in MVC called the incomplete continual data problem (ICDP). Specifically, most existing algorithms assume that views are available in advance and overlook the scenarios where data observations of views are accumulated over time. Due to privacy considerations or memory limitations, previous views cannot be stored in these situations. Some works have proposed ways to handle this problem, but all of them fail to address incomplete views. Such an incomplete continual data problem (ICDP) in MVC is difficult to solve since incomplete information with continual data increases the difficulty of extracting consistent and complementary knowledge among views. We propose Fast Continual Multi-View Clustering with Incomplete Views (FCMVC-IV) to address this issue. Specifically, the method maintains a scalable consensus coefficient matrix and updates its knowledge with the incoming incomplete view rather than storing and recomputing all the data matrices. Considering that the given views are incomplete, the newly collected view might contain samples that have yet to appear; two indicator matrices and a rotation matrix are developed to match matrices with different dimensions. In addition, we design a three-step iterative algorithm to solve the resultant problem with linear complexity and proven convergence. Comprehensive experiments conducted on various datasets demonstrate the superiority of FCMVC-IV over the competing approaches. The code is publicly available at https://github.com/wanxinhang/FCMVC-IV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Alex完成签到,获得积分10
1秒前
1秒前
南松发布了新的文献求助10
2秒前
Me完成签到,获得积分10
2秒前
LILING完成签到,获得积分10
2秒前
2秒前
LILING发布了新的文献求助100
6秒前
PhDshi发布了新的文献求助10
6秒前
wangjie发布了新的文献求助10
6秒前
jzhu274完成签到,获得积分10
6秒前
6秒前
长安完成签到,获得积分10
6秒前
Aoka完成签到,获得积分10
10秒前
jhwang完成签到,获得积分10
10秒前
颜云尔发布了新的文献求助10
11秒前
11秒前
宝宝发布了新的文献求助10
11秒前
13秒前
13秒前
自觉语琴完成签到 ,获得积分10
13秒前
玉米侠完成签到,获得积分10
14秒前
英姑应助五花肉采纳,获得10
16秒前
16秒前
程景安完成签到,获得积分20
17秒前
赘婿应助辜越涛采纳,获得10
17秒前
19秒前
123456发布了新的文献求助10
20秒前
安谣完成签到,获得积分20
20秒前
22秒前
程景安发布了新的文献求助20
24秒前
25秒前
Akim应助宝宝采纳,获得10
26秒前
26秒前
董璐完成签到,获得积分10
27秒前
凉凉应助妩媚的尔阳采纳,获得10
27秒前
烟花应助PhDshi采纳,获得10
28秒前
小米虫发布了新的文献求助10
28秒前
香蕉觅云应助CHSLN采纳,获得10
29秒前
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010877
求助须知:如何正确求助?哪些是违规求助? 3550541
关于积分的说明 11305921
捐赠科研通 3284903
什么是DOI,文献DOI怎么找? 1810905
邀请新用户注册赠送积分活动 886591
科研通“疑难数据库(出版商)”最低求助积分说明 811509