Fast Continual Multi-View Clustering With Incomplete Views

聚类分析 可扩展性 计算机科学 完整信息 趋同(经济学) 利用 稀疏矩阵 数据挖掘 理论计算机科学 机器学习 数据库 数学 物理 计算机安全 数理经济学 量子力学 经济 高斯分布 经济增长
作者
Xinhang Wan,Bin Xiao,Xinwang Liu,Jiyuan Liu,Weixuan Liang,En Zhu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2995-3008 被引量:5
标识
DOI:10.1109/tip.2024.3388974
摘要

Multi-view clustering (MVC) has attracted broad attention due to its capacity to exploit consistent and complementary information across views. This paper focuses on a challenging issue in MVC called the incomplete continual data problem (ICDP). Specifically, most existing algorithms assume that views are available in advance and overlook the scenarios where data observations of views are accumulated over time. Due to privacy considerations or memory limitations, previous views cannot be stored in these situations. Some works have proposed ways to handle this problem, but all of them fail to address incomplete views. Such an incomplete continual data problem (ICDP) in MVC is difficult to solve since incomplete information with continual data increases the difficulty of extracting consistent and complementary knowledge among views. We propose Fast Continual Multi-View Clustering with Incomplete Views (FCMVC-IV) to address this issue. Specifically, the method maintains a scalable consensus coefficient matrix and updates its knowledge with the incoming incomplete view rather than storing and recomputing all the data matrices. Considering that the given views are incomplete, the newly collected view might contain samples that have yet to appear; two indicator matrices and a rotation matrix are developed to match matrices with different dimensions. In addition, we design a three-step iterative algorithm to solve the resultant problem with linear complexity and proven convergence. Comprehensive experiments conducted on various datasets demonstrate the superiority of FCMVC-IV over the competing approaches. The code is publicly available at https://github.com/wanxinhang/FCMVC-IV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pride应助雪山飞龙采纳,获得10
刚刚
刚刚
WY发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
Lucas应助积极的忆曼采纳,获得10
2秒前
2秒前
swy发布了新的文献求助10
2秒前
葭月十七完成签到,获得积分10
2秒前
3秒前
小郗完成签到 ,获得积分10
3秒前
3秒前
哭泣半双发布了新的文献求助30
3秒前
4秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
一一应助科研通管家采纳,获得20
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
5秒前
英姑应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
6秒前
pxj发布了新的文献求助10
7秒前
葭月十七发布了新的文献求助10
8秒前
9秒前
可靠的颤发布了新的文献求助10
10秒前
zyz关注了科研通微信公众号
10秒前
sideaeye完成签到,获得积分10
11秒前
11秒前
阿猩a发布了新的文献求助10
11秒前
11秒前
科研通AI2S应助WY采纳,获得10
11秒前
顾矜应助lupeichun采纳,获得10
13秒前
14秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125080
求助须知:如何正确求助?哪些是违规求助? 2775384
关于积分的说明 7726510
捐赠科研通 2430943
什么是DOI,文献DOI怎么找? 1291531
科研通“疑难数据库(出版商)”最低求助积分说明 622169
版权声明 600352