Frontiers in Operations: Equitable Data-Driven Facility Location and Resource Allocation to Fight the Opioid Epidemic

阿片类药物过量 阿片类药物使用障碍 差速器(机械装置) 资源配置 类阿片流行病 计算机科学 运筹学 类阿片 医学 数学 (+)-纳洛酮 计算机网络 内科学 工程类 航空航天工程 受体
作者
Joyce Luo,Bartolomeo Stellato
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (4): 1229-1244 被引量:3
标识
DOI:10.1287/msom.2023.0042
摘要

Problem definition: The opioid epidemic is a crisis that has plagued the United States for decades. One central issue of the epidemic is inequitable access to treatment for opioid use disorder (OUD), which puts certain populations at a higher risk of opioid overdose. Methodology/results: We integrate a predictive dynamical model and a prescriptive optimization problem to compute high-quality opioid treatment facility and treatment budget allocations for each U.S. state. Our predictive model is a differential equation-based epidemiological model that captures the dynamics of the opioid epidemic. We use a process inspired by neural ordinary differential equations to fit this model to opioid epidemic data for each state and obtain estimates for unknown parameters in the model. We then incorporate this epidemiological model into a corresponding mixed-integer optimization problem (MIP) that aims to minimize the number of opioid overdose deaths and the number of people with OUD. We develop strong relaxations based on McCormick envelopes to efficiently compute approximate solutions to our MIPs that have a mean optimality gap of 3.99%. Our method provides socioeconomically equitable solutions, as it incentivizes investments in areas with higher social vulnerability (from the U.S. Centers for Disease Control’s Social Vulnerability Index) and opioid prescribing rates. On average, when allowing for overbudget solutions, our approach decreases the number of people with OUD by [Formula: see text], increases the number of people in treatment by [Formula: see text], and decreases the number of opioid-related deaths by [Formula: see text] after 2 years compared with the baseline epidemiological model’s predictions. Managerial implications: Our solutions show that policymakers should target adding treatment facilities to counties that have significantly fewer facilities than their population share and are more socially vulnerable. Furthermore, we demonstrate that our optimization approach, guided by epidemiological and socioeconomic factors, should help inform these strategic decisions, as it yields population health benefits in comparison with benchmarks based solely on population and social vulnerability. History: This paper has been accepted in the Manufacturing & Service Operations Management Frontiers in Operations Initiative. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.0042 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
柠檬发布了新的文献求助10
2秒前
独特的鱼完成签到,获得积分10
2秒前
3秒前
友好元槐完成签到,获得积分10
3秒前
5秒前
傲娇的鹰完成签到,获得积分10
6秒前
正电荷完成签到 ,获得积分10
6秒前
Charles发布了新的文献求助10
6秒前
6秒前
Andy完成签到,获得积分10
6秒前
ljhhjl完成签到 ,获得积分10
7秒前
耶布达发布了新的文献求助10
7秒前
7秒前
9秒前
YF完成签到,获得积分10
9秒前
希望天下0贩的0应助123采纳,获得10
10秒前
聪明山芙完成签到,获得积分10
10秒前
12秒前
任虎发布了新的文献求助30
12秒前
天天快乐应助pengxiangfeng采纳,获得10
13秒前
LouisKing发布了新的文献求助10
13秒前
寂灭之时完成签到,获得积分10
13秒前
霸气侧漏发布了新的文献求助10
14秒前
16秒前
点金石发布了新的文献求助10
16秒前
dsajkdlas发布了新的文献求助10
17秒前
survivor1320发布了新的文献求助10
18秒前
cheryl发布了新的文献求助10
19秒前
科研通AI6应助果冻采纳,获得20
19秒前
李爱国应助乳酸菌小面包采纳,获得10
20秒前
平常的蓝天完成签到,获得积分20
21秒前
彭于晏应助dsajkdlas采纳,获得10
22秒前
22秒前
lijingyi完成签到,获得积分10
22秒前
科研通AI6应助崔哈哈采纳,获得10
23秒前
煜祺完成签到,获得积分10
23秒前
23秒前
24秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339665
求助须知:如何正确求助?哪些是违规求助? 4476410
关于积分的说明 13931491
捐赠科研通 4371956
什么是DOI,文献DOI怎么找? 2402218
邀请新用户注册赠送积分活动 1395083
关于科研通互助平台的介绍 1367077