Frontiers in Operations: Equitable Data-Driven Facility Location and Resource Allocation to Fight the Opioid Epidemic

阿片类药物过量 阿片类药物使用障碍 差速器(机械装置) 资源配置 类阿片流行病 计算机科学 运筹学 类阿片 医学 数学 (+)-纳洛酮 计算机网络 内科学 工程类 航空航天工程 受体
作者
Joyce Luo,Bartolomeo Stellato
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (4): 1229-1244 被引量:4
标识
DOI:10.1287/msom.2023.0042
摘要

Problem definition: The opioid epidemic is a crisis that has plagued the United States for decades. One central issue of the epidemic is inequitable access to treatment for opioid use disorder (OUD), which puts certain populations at a higher risk of opioid overdose. Methodology/results: We integrate a predictive dynamical model and a prescriptive optimization problem to compute high-quality opioid treatment facility and treatment budget allocations for each U.S. state. Our predictive model is a differential equation-based epidemiological model that captures the dynamics of the opioid epidemic. We use a process inspired by neural ordinary differential equations to fit this model to opioid epidemic data for each state and obtain estimates for unknown parameters in the model. We then incorporate this epidemiological model into a corresponding mixed-integer optimization problem (MIP) that aims to minimize the number of opioid overdose deaths and the number of people with OUD. We develop strong relaxations based on McCormick envelopes to efficiently compute approximate solutions to our MIPs that have a mean optimality gap of 3.99%. Our method provides socioeconomically equitable solutions, as it incentivizes investments in areas with higher social vulnerability (from the U.S. Centers for Disease Control’s Social Vulnerability Index) and opioid prescribing rates. On average, when allowing for overbudget solutions, our approach decreases the number of people with OUD by [Formula: see text], increases the number of people in treatment by [Formula: see text], and decreases the number of opioid-related deaths by [Formula: see text] after 2 years compared with the baseline epidemiological model’s predictions. Managerial implications: Our solutions show that policymakers should target adding treatment facilities to counties that have significantly fewer facilities than their population share and are more socially vulnerable. Furthermore, we demonstrate that our optimization approach, guided by epidemiological and socioeconomic factors, should help inform these strategic decisions, as it yields population health benefits in comparison with benchmarks based solely on population and social vulnerability. History: This paper has been accepted in the Manufacturing & Service Operations Management Frontiers in Operations Initiative. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.0042 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助江河JT采纳,获得10
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
fengjingjun完成签到,获得积分10
刚刚
刚刚
1秒前
0994完成签到 ,获得积分10
1秒前
852应助林加雄采纳,获得10
1秒前
2秒前
Criminology34应助Iris99采纳,获得10
2秒前
3秒前
Owen应助忧心的捕采纳,获得10
3秒前
小二郎应助ZiruiDing采纳,获得10
4秒前
4秒前
4秒前
4秒前
菜菜发布了新的文献求助10
4秒前
Akim应助啊懂采纳,获得10
5秒前
贰拾发布了新的文献求助10
5秒前
亚尔完成签到,获得积分10
5秒前
5秒前
ee发布了新的文献求助10
5秒前
科研通AI6应助棍棍来也采纳,获得10
6秒前
12345678发布了新的文献求助10
6秒前
6秒前
ZeKaWa应助堡主采纳,获得10
6秒前
21发布了新的文献求助10
7秒前
WD完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
科研通AI6应助Camellia采纳,获得10
7秒前
7秒前
酷炫翠柏发布了新的文献求助10
8秒前
胡春柳应助科研狂徒采纳,获得10
8秒前
求助人员应助anllo采纳,获得10
8秒前
9秒前
XianShen完成签到,获得积分10
9秒前
jin发布了新的文献求助10
9秒前
龙游天下完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625139
求助须知:如何正确求助?哪些是违规求助? 4710965
关于积分的说明 14953364
捐赠科研通 4779073
什么是DOI,文献DOI怎么找? 2553598
邀请新用户注册赠送积分活动 1515504
关于科研通互助平台的介绍 1475786