Frontiers in Operations: Equitable Data-Driven Facility Location and Resource Allocation to Fight the Opioid Epidemic

阿片类药物过量 阿片类药物使用障碍 差速器(机械装置) 资源配置 类阿片流行病 计算机科学 运筹学 类阿片 医学 数学 (+)-纳洛酮 计算机网络 受体 内科学 工程类 航空航天工程
作者
Joyce Luo,Bartolomeo Stellato
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/msom.2023.0042
摘要

Problem definition: The opioid epidemic is a crisis that has plagued the United States for decades. One central issue of the epidemic is inequitable access to treatment for opioid use disorder (OUD), which puts certain populations at a higher risk of opioid overdose. Methodology/results: We integrate a predictive dynamical model and a prescriptive optimization problem to compute high-quality opioid treatment facility and treatment budget allocations for each U.S. state. Our predictive model is a differential equation-based epidemiological model that captures the dynamics of the opioid epidemic. We use a process inspired by neural ordinary differential equations to fit this model to opioid epidemic data for each state and obtain estimates for unknown parameters in the model. We then incorporate this epidemiological model into a corresponding mixed-integer optimization problem (MIP) that aims to minimize the number of opioid overdose deaths and the number of people with OUD. We develop strong relaxations based on McCormick envelopes to efficiently compute approximate solutions to our MIPs that have a mean optimality gap of 3.99%. Our method provides socioeconomically equitable solutions, as it incentivizes investments in areas with higher social vulnerability (from the U.S. Centers for Disease Control’s Social Vulnerability Index) and opioid prescribing rates. On average, when allowing for overbudget solutions, our approach decreases the number of people with OUD by [Formula: see text], increases the number of people in treatment by [Formula: see text], and decreases the number of opioid-related deaths by [Formula: see text] after 2 years compared with the baseline epidemiological model’s predictions. Managerial implications: Our solutions show that policymakers should target adding treatment facilities to counties that have significantly fewer facilities than their population share and are more socially vulnerable. Furthermore, we demonstrate that our optimization approach, guided by epidemiological and socioeconomic factors, should help inform these strategic decisions, as it yields population health benefits in comparison with benchmarks based solely on population and social vulnerability. History: This paper has been accepted in the Manufacturing & Service Operations Management Frontiers in Operations Initiative. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.0042 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
起司嗯发布了新的文献求助10
刚刚
英姑应助星星采纳,获得10
1秒前
1秒前
木野狐发布了新的文献求助10
1秒前
2秒前
搬砖道人发布了新的文献求助10
2秒前
自然的初丹完成签到,获得积分20
2秒前
泡泡鱼完成签到 ,获得积分10
3秒前
柳叶完成签到,获得积分10
3秒前
杂货铺老板娘完成签到,获得积分10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
通~发布了新的文献求助10
3秒前
soso应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
4秒前
dyh6802完成签到,获得积分10
4秒前
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
kk应助科研通管家采纳,获得20
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得20
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
平常的G应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
正版DY发布了新的文献求助20
5秒前
5秒前
拈花发布了新的文献求助10
5秒前
fengzi151完成签到,获得积分10
5秒前
6秒前
巧巧完成签到,获得积分10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794