Frontiers in Operations: Equitable Data-Driven Facility Location and Resource Allocation to Fight the Opioid Epidemic

阿片类药物过量 阿片类药物使用障碍 差速器(机械装置) 资源配置 类阿片流行病 计算机科学 运筹学 类阿片 医学 数学 (+)-纳洛酮 计算机网络 受体 内科学 工程类 航空航天工程
作者
Joyce Luo,Bartolomeo Stellato
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (4): 1229-1244 被引量:6
标识
DOI:10.1287/msom.2023.0042
摘要

Problem definition: The opioid epidemic is a crisis that has plagued the United States for decades. One central issue of the epidemic is inequitable access to treatment for opioid use disorder (OUD), which puts certain populations at a higher risk of opioid overdose. Methodology/results: We integrate a predictive dynamical model and a prescriptive optimization problem to compute high-quality opioid treatment facility and treatment budget allocations for each U.S. state. Our predictive model is a differential equation-based epidemiological model that captures the dynamics of the opioid epidemic. We use a process inspired by neural ordinary differential equations to fit this model to opioid epidemic data for each state and obtain estimates for unknown parameters in the model. We then incorporate this epidemiological model into a corresponding mixed-integer optimization problem (MIP) that aims to minimize the number of opioid overdose deaths and the number of people with OUD. We develop strong relaxations based on McCormick envelopes to efficiently compute approximate solutions to our MIPs that have a mean optimality gap of 3.99%. Our method provides socioeconomically equitable solutions, as it incentivizes investments in areas with higher social vulnerability (from the U.S. Centers for Disease Control’s Social Vulnerability Index) and opioid prescribing rates. On average, when allowing for overbudget solutions, our approach decreases the number of people with OUD by [Formula: see text], increases the number of people in treatment by [Formula: see text], and decreases the number of opioid-related deaths by [Formula: see text] after 2 years compared with the baseline epidemiological model’s predictions. Managerial implications: Our solutions show that policymakers should target adding treatment facilities to counties that have significantly fewer facilities than their population share and are more socially vulnerable. Furthermore, we demonstrate that our optimization approach, guided by epidemiological and socioeconomic factors, should help inform these strategic decisions, as it yields population health benefits in comparison with benchmarks based solely on population and social vulnerability. History: This paper has been accepted in the Manufacturing & Service Operations Management Frontiers in Operations Initiative. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.0042 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健应助蓝瑞采纳,获得10
刚刚
刚刚
gulu发布了新的文献求助10
1秒前
可知发布了新的文献求助10
1秒前
szong完成签到,获得积分10
1秒前
小二郎应助11采纳,获得10
1秒前
1秒前
Jin发布了新的文献求助10
2秒前
华仔应助CJY采纳,获得10
2秒前
吧嗒完成签到,获得积分10
3秒前
所所应助苏锦霖采纳,获得10
3秒前
尼仲星发布了新的文献求助30
3秒前
酷炫绿草发布了新的文献求助10
3秒前
研友_8WzxMZ发布了新的文献求助10
4秒前
4秒前
lx33101128完成签到,获得积分10
4秒前
4秒前
4秒前
充电宝应助wu030采纳,获得30
5秒前
6秒前
7秒前
wanci应助昏睡的长颈鹿采纳,获得10
8秒前
ding应助乌鸦坐飞机采纳,获得10
8秒前
8秒前
西洲发布了新的文献求助10
9秒前
9秒前
飘零的歌手完成签到,获得积分10
9秒前
令狐发布了新的文献求助10
9秒前
jinling发布了新的文献求助30
10秒前
10秒前
11秒前
yyy发布了新的文献求助10
11秒前
诗木完成签到,获得积分20
11秒前
11秒前
1101592875发布了新的文献求助30
12秒前
12秒前
酷炫绿草完成签到,获得积分10
12秒前
12秒前
JamesPei应助冯大哥采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721182
求助须知:如何正确求助?哪些是违规求助? 5264527
关于积分的说明 15293440
捐赠科研通 4870438
什么是DOI,文献DOI怎么找? 2615484
邀请新用户注册赠送积分活动 1565349
关于科研通互助平台的介绍 1522340