Frontiers in Operations: Equitable Data-Driven Facility Location and Resource Allocation to Fight the Opioid Epidemic

阿片类药物过量 阿片类药物使用障碍 差速器(机械装置) 资源配置 类阿片流行病 计算机科学 运筹学 类阿片 医学 数学 (+)-纳洛酮 计算机网络 受体 内科学 工程类 航空航天工程
作者
Joyce Luo,Bartolomeo Stellato
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (4): 1229-1244 被引量:4
标识
DOI:10.1287/msom.2023.0042
摘要

Problem definition: The opioid epidemic is a crisis that has plagued the United States for decades. One central issue of the epidemic is inequitable access to treatment for opioid use disorder (OUD), which puts certain populations at a higher risk of opioid overdose. Methodology/results: We integrate a predictive dynamical model and a prescriptive optimization problem to compute high-quality opioid treatment facility and treatment budget allocations for each U.S. state. Our predictive model is a differential equation-based epidemiological model that captures the dynamics of the opioid epidemic. We use a process inspired by neural ordinary differential equations to fit this model to opioid epidemic data for each state and obtain estimates for unknown parameters in the model. We then incorporate this epidemiological model into a corresponding mixed-integer optimization problem (MIP) that aims to minimize the number of opioid overdose deaths and the number of people with OUD. We develop strong relaxations based on McCormick envelopes to efficiently compute approximate solutions to our MIPs that have a mean optimality gap of 3.99%. Our method provides socioeconomically equitable solutions, as it incentivizes investments in areas with higher social vulnerability (from the U.S. Centers for Disease Control’s Social Vulnerability Index) and opioid prescribing rates. On average, when allowing for overbudget solutions, our approach decreases the number of people with OUD by [Formula: see text], increases the number of people in treatment by [Formula: see text], and decreases the number of opioid-related deaths by [Formula: see text] after 2 years compared with the baseline epidemiological model’s predictions. Managerial implications: Our solutions show that policymakers should target adding treatment facilities to counties that have significantly fewer facilities than their population share and are more socially vulnerable. Furthermore, we demonstrate that our optimization approach, guided by epidemiological and socioeconomic factors, should help inform these strategic decisions, as it yields population health benefits in comparison with benchmarks based solely on population and social vulnerability. History: This paper has been accepted in the Manufacturing & Service Operations Management Frontiers in Operations Initiative. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.0042 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qrr发布了新的文献求助10
1秒前
1秒前
完美世界应助有缘采纳,获得10
2秒前
俊逸冬日发布了新的文献求助10
2秒前
2秒前
2秒前
华仔应助健壮凡桃采纳,获得10
2秒前
3秒前
英俊的铭应助11采纳,获得10
3秒前
3秒前
柚子完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
5秒前
善学以致用应助YH采纳,获得10
5秒前
Lemon完成签到 ,获得积分10
6秒前
shhoing应助在河之洲采纳,获得10
6秒前
6秒前
善良善愁发布了新的文献求助10
6秒前
善学以致用应助无语采纳,获得10
6秒前
huaming发布了新的文献求助20
7秒前
7秒前
7秒前
7秒前
关关发布了新的文献求助10
7秒前
莫莫完成签到,获得积分10
8秒前
柚子发布了新的文献求助10
8秒前
nerd发布了新的文献求助10
8秒前
专注的十八完成签到,获得积分10
8秒前
洗澡记得戴浴帽完成签到,获得积分10
8秒前
科研通AI6应助装货采纳,获得10
8秒前
健壮的以莲完成签到,获得积分10
9秒前
9秒前
9秒前
11秒前
Doctor_jie完成签到 ,获得积分10
12秒前
yjx关注了科研通微信公众号
12秒前
脑洞疼应助ksq采纳,获得10
12秒前
高贵水壶发布了新的文献求助10
12秒前
12秒前
乔钰涵发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526777
求助须知:如何正确求助?哪些是违规求助? 4616768
关于积分的说明 14555797
捐赠科研通 4555282
什么是DOI,文献DOI怎么找? 2496282
邀请新用户注册赠送积分活动 1476561
关于科研通互助平台的介绍 1448126