Unified Model for Children's Brain Image Segmentation with Co-Registration Framework Guided by Longitudinal MRI

图像配准 人工智能 图像分割 计算机科学 计算机视觉 分割 医学影像学 磁共振成像 神经影像学 图像处理 实时核磁共振成像 图像(数学) 放射科 医学 心理学 神经科学
作者
Lin Teng,Yichu He,Zehong Cao,Rui Hua,Ye Han,Qianjin Feng,Feng Shi,Dinggang Shen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:2
标识
DOI:10.1109/jbhi.2024.3393974
摘要

Accurate segmentation of brain structures is crucial for analyzing longitudinal changes in children's brains. However, existing methods are mostly based on models established at a single time-point due to difficulty in obtaining annotated data and dynamic variation of tissue intensity. The main problem with such approaches is that, when conducting longitudinal analysis, images from different time points are segmented by different models, leading to significant variation in estimating development trends. In this paper, we propose a novel unified model with co-registration framework to segment children's brain images covering neonates to preschoolers, which is formulated as two stages. First, to overcome the shortage of annotated data, we propose building gold-standard segmentation with co-registration framework guided by longitudinal data. Second, we construct a unified segmentation model tailored to brain images at 0-6 years old through the introduction of a convolutional network (named SE-VB-Net), which combines our previously proposed VB-Net with Squeeze-and-Excitation (SE) block. Moreover, different from existing methods that only require both T1- and T2-weighted MR images as inputs, our designed model also allows a single T1-weighted MR image as input. The proposed method is evaluated on the main dataset (320 longitudinal subjects with average 2 time-points) and two external datasets (10 cases with 6-month-old and 40 cases with 20-45 weeks, respectively). Results demonstrate that our proposed method achieves a high performance (>92%), even over a single time-point. This means that it is suitable for brain image analysis with large appearance variation, and largely broadens the application scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Leeu完成签到,获得积分10
1秒前
CodeCraft应助韩浩男采纳,获得10
1秒前
2秒前
poohpooh完成签到,获得积分10
2秒前
3秒前
橘猫ADD发布了新的文献求助20
3秒前
付绒完成签到,获得积分10
4秒前
4秒前
Wang发布了新的文献求助10
4秒前
5秒前
充电宝应助wcwzcz采纳,获得10
7秒前
yifan625发布了新的文献求助10
7秒前
7秒前
8秒前
后陡门的夏完成签到,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
11秒前
zyf发布了新的文献求助10
12秒前
12秒前
samaritan发布了新的文献求助10
12秒前
负责的甜瓜完成签到,获得积分10
13秒前
华仔应助Mine采纳,获得10
13秒前
zhh发布了新的文献求助10
13秒前
14秒前
王一完成签到,获得积分10
14秒前
15秒前
15秒前
爬得飞快的仲文博完成签到,获得积分10
16秒前
lotus0311完成签到,获得积分10
17秒前
王一发布了新的文献求助10
18秒前
xiaostou发布了新的文献求助10
18秒前
20秒前
samaritan完成签到,获得积分10
21秒前
千流发布了新的文献求助10
22秒前
22秒前
xiaoyao发布了新的文献求助10
22秒前
yi发布了新的文献求助10
23秒前
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951173
求助须知:如何正确求助?哪些是违规求助? 3496521
关于积分的说明 11082942
捐赠科研通 3226974
什么是DOI,文献DOI怎么找? 1784145
邀请新用户注册赠送积分活动 868219
科研通“疑难数据库(出版商)”最低求助积分说明 801089