图像配准
人工智能
图像分割
计算机科学
计算机视觉
分割
医学影像学
磁共振成像
神经影像学
图像处理
实时核磁共振成像
图像(数学)
放射科
医学
心理学
神经科学
作者
Lin Teng,Yichu He,Zehong Cao,Rui Hua,Ye Han,Qianjin Feng,Feng Shi,Dinggang Shen
出处
期刊:IEEE Journal of Biomedical and Health Informatics
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-10
标识
DOI:10.1109/jbhi.2024.3393974
摘要
Accurate segmentation of brain structures is crucial for analyzing longitudinal changes in children's brains. However, existing methods are mostly based on models established at a single time-point due to difficulty in obtaining annotated data and dynamic variation of tissue intensity. The main problem with such approaches is that, when conducting longitudinal analysis, images from different time points are segmented by different models, leading to significant variation in estimating development trends. In this paper, we propose a novel unified model with co-registration framework to segment children's brain images covering neonates to preschoolers, which is formulated as two stages. First, to overcome the shortage of annotated data, we propose building gold-standard segmentation with co-registration framework guided by longitudinal data. Second, we construct a unified segmentation model tailored to brain images at 0-6 years old through the introduction of a convolutional network (named SE-VB-Net), which combines our previously proposed VB-Net with Squeeze-and-Excitation (SE) block. Moreover, different from existing methods that only require both T1- and T2-weighted MR images as inputs, our designed model also allows a single T1-weighted MR image as input. The proposed method is evaluated on the main dataset (320 longitudinal subjects with average 2 time-points) and two external datasets (10 cases with 6-month-old and 40 cases with 20-45 weeks, respectively). Results demonstrate that our proposed method achieves a high performance (>92%), even over a single time-point. This means that it is suitable for brain image analysis with large appearance variation, and largely broadens the application scenarios.
科研通智能强力驱动
Strongly Powered by AbleSci AI