Unified Model for Children's Brain Image Segmentation with Co-Registration Framework Guided by Longitudinal MRI

图像配准 人工智能 图像分割 计算机科学 计算机视觉 分割 医学影像学 磁共振成像 神经影像学 图像处理 实时核磁共振成像 图像(数学) 放射科 医学 心理学 神经科学
作者
Lin Teng,Yichu He,Zehong Cao,Rui Hua,Ye Han,Qianjin Feng,Feng Shi,Dinggang Shen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:2
标识
DOI:10.1109/jbhi.2024.3393974
摘要

Accurate segmentation of brain structures is crucial for analyzing longitudinal changes in children's brains. However, existing methods are mostly based on models established at a single time-point due to difficulty in obtaining annotated data and dynamic variation of tissue intensity. The main problem with such approaches is that, when conducting longitudinal analysis, images from different time points are segmented by different models, leading to significant variation in estimating development trends. In this paper, we propose a novel unified model with co-registration framework to segment children's brain images covering neonates to preschoolers, which is formulated as two stages. First, to overcome the shortage of annotated data, we propose building gold-standard segmentation with co-registration framework guided by longitudinal data. Second, we construct a unified segmentation model tailored to brain images at 0-6 years old through the introduction of a convolutional network (named SE-VB-Net), which combines our previously proposed VB-Net with Squeeze-and-Excitation (SE) block. Moreover, different from existing methods that only require both T1- and T2-weighted MR images as inputs, our designed model also allows a single T1-weighted MR image as input. The proposed method is evaluated on the main dataset (320 longitudinal subjects with average 2 time-points) and two external datasets (10 cases with 6-month-old and 40 cases with 20-45 weeks, respectively). Results demonstrate that our proposed method achieves a high performance (>92%), even over a single time-point. This means that it is suitable for brain image analysis with large appearance variation, and largely broadens the application scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Grayball应助科研小白采纳,获得10
刚刚
阳光完成签到,获得积分10
刚刚
duan完成签到,获得积分10
刚刚
7777777发布了新的文献求助10
刚刚
朴素篮球完成签到,获得积分10
1秒前
清辉月凝完成签到,获得积分10
2秒前
Barry完成签到,获得积分10
2秒前
枫叶完成签到 ,获得积分10
2秒前
英姑应助桶桶要好好学习采纳,获得10
2秒前
3秒前
不辞完成签到,获得积分10
3秒前
ry发布了新的文献求助10
3秒前
song完成签到,获得积分10
3秒前
明亮无颜完成签到,获得积分10
3秒前
4秒前
4秒前
小慈爱鸡完成签到 ,获得积分10
4秒前
4秒前
英俊的铭应助麻麻采纳,获得10
4秒前
97b1完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
羊羊羊发布了新的文献求助30
6秒前
7秒前
7秒前
再沉默完成签到,获得积分10
8秒前
8秒前
8秒前
明亮无颜发布了新的文献求助20
9秒前
9秒前
谁还没有个生活完成签到,获得积分10
9秒前
Feng发布了新的文献求助10
9秒前
zzz发布了新的文献求助10
9秒前
MailkMonk发布了新的文献求助10
9秒前
9秒前
xuxuxu完成签到,获得积分10
10秒前
文龙完成签到 ,获得积分10
10秒前
ximomm完成签到,获得积分10
10秒前
无不破哉发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678