Unified Model for Children's Brain Image Segmentation with Co-Registration Framework Guided by Longitudinal MRI

图像配准 人工智能 图像分割 计算机科学 计算机视觉 分割 医学影像学 磁共振成像 神经影像学 图像处理 实时核磁共振成像 图像(数学) 放射科 医学 心理学 神经科学
作者
Lin Teng,Yichu He,Zehong Cao,Rui Hua,Ye Han,Qianjin Feng,Feng Shi,Dinggang Shen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:2
标识
DOI:10.1109/jbhi.2024.3393974
摘要

Accurate segmentation of brain structures is crucial for analyzing longitudinal changes in children's brains. However, existing methods are mostly based on models established at a single time-point due to difficulty in obtaining annotated data and dynamic variation of tissue intensity. The main problem with such approaches is that, when conducting longitudinal analysis, images from different time points are segmented by different models, leading to significant variation in estimating development trends. In this paper, we propose a novel unified model with co-registration framework to segment children's brain images covering neonates to preschoolers, which is formulated as two stages. First, to overcome the shortage of annotated data, we propose building gold-standard segmentation with co-registration framework guided by longitudinal data. Second, we construct a unified segmentation model tailored to brain images at 0-6 years old through the introduction of a convolutional network (named SE-VB-Net), which combines our previously proposed VB-Net with Squeeze-and-Excitation (SE) block. Moreover, different from existing methods that only require both T1- and T2-weighted MR images as inputs, our designed model also allows a single T1-weighted MR image as input. The proposed method is evaluated on the main dataset (320 longitudinal subjects with average 2 time-points) and two external datasets (10 cases with 6-month-old and 40 cases with 20-45 weeks, respectively). Results demonstrate that our proposed method achieves a high performance (>92%), even over a single time-point. This means that it is suitable for brain image analysis with large appearance variation, and largely broadens the application scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡拉米完成签到,获得积分10
刚刚
呆鸥完成签到,获得积分10
1秒前
nanan完成签到,获得积分10
1秒前
1秒前
翠翠完成签到,获得积分10
2秒前
xwh完成签到,获得积分10
2秒前
xij完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
roosterpan发布了新的文献求助10
2秒前
3秒前
3秒前
无花果应助可爱从霜采纳,获得10
3秒前
烂漫含雁发布了新的文献求助10
3秒前
4秒前
清茶完成签到,获得积分10
4秒前
4秒前
ASen发布了新的文献求助30
4秒前
Yeong发布了新的文献求助10
5秒前
浮游应助123123采纳,获得10
5秒前
阿牛完成签到,获得积分10
5秒前
自由的中蓝完成签到 ,获得积分10
5秒前
5秒前
小星星完成签到 ,获得积分10
6秒前
hd发布了新的文献求助10
6秒前
6秒前
王开心应助蓝色雪狐采纳,获得10
6秒前
7秒前
小笼包完成签到,获得积分10
7秒前
yzm完成签到,获得积分10
7秒前
7秒前
Amostre88完成签到,获得积分10
7秒前
华仔应助羽之介采纳,获得10
8秒前
8秒前
123123完成签到 ,获得积分10
8秒前
Rainy完成签到,获得积分10
8秒前
8秒前
虚幻的半凡完成签到,获得积分20
8秒前
9秒前
Ll_l发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4599250
求助须知:如何正确求助?哪些是违规求助? 4009968
关于积分的说明 12414035
捐赠科研通 3689591
什么是DOI,文献DOI怎么找? 2033925
邀请新用户注册赠送积分活动 1067094
科研通“疑难数据库(出版商)”最低求助积分说明 952171