Unified Model for Children's Brain Image Segmentation with Co-Registration Framework Guided by Longitudinal MRI

图像配准 人工智能 图像分割 计算机科学 计算机视觉 分割 医学影像学 磁共振成像 神经影像学 图像处理 实时核磁共振成像 图像(数学) 放射科 医学 心理学 神经科学
作者
Lin Teng,Yichu He,Zehong Cao,Rui Hua,Ye Han,Qianjin Feng,Feng Shi,Dinggang Shen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/jbhi.2024.3393974
摘要

Accurate segmentation of brain structures is crucial for analyzing longitudinal changes in children's brains. However, existing methods are mostly based on models established at a single time-point due to difficulty in obtaining annotated data and dynamic variation of tissue intensity. The main problem with such approaches is that, when conducting longitudinal analysis, images from different time points are segmented by different models, leading to significant variation in estimating development trends. In this paper, we propose a novel unified model with co-registration framework to segment children's brain images covering neonates to preschoolers, which is formulated as two stages. First, to overcome the shortage of annotated data, we propose building gold-standard segmentation with co-registration framework guided by longitudinal data. Second, we construct a unified segmentation model tailored to brain images at 0-6 years old through the introduction of a convolutional network (named SE-VB-Net), which combines our previously proposed VB-Net with Squeeze-and-Excitation (SE) block. Moreover, different from existing methods that only require both T1- and T2-weighted MR images as inputs, our designed model also allows a single T1-weighted MR image as input. The proposed method is evaluated on the main dataset (320 longitudinal subjects with average 2 time-points) and two external datasets (10 cases with 6-month-old and 40 cases with 20-45 weeks, respectively). Results demonstrate that our proposed method achieves a high performance (>92%), even over a single time-point. This means that it is suitable for brain image analysis with large appearance variation, and largely broadens the application scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LOVE17发布了新的文献求助10
刚刚
Eva完成签到,获得积分10
1秒前
Pattis完成签到 ,获得积分10
2秒前
Lynette8888发布了新的文献求助20
3秒前
3秒前
4秒前
4秒前
壮观寒荷完成签到,获得积分10
5秒前
7秒前
贤惠的碧空完成签到,获得积分10
10秒前
mmr完成签到,获得积分10
10秒前
丘比特应助Source采纳,获得10
11秒前
下次一定完成签到,获得积分10
12秒前
FashionBoy应助LL采纳,获得10
12秒前
wuyan完成签到,获得积分10
12秒前
Lareina完成签到,获得积分20
12秒前
科研通AI2S应助wsff采纳,获得10
12秒前
上官若男应助玛瑙采纳,获得10
14秒前
14秒前
14秒前
pcr163应助在水一方采纳,获得100
15秒前
xiaofei666完成签到,获得积分10
15秒前
阿三完成签到 ,获得积分10
17秒前
zy完成签到,获得积分10
18秒前
LOVE17完成签到 ,获得积分10
19秒前
陈糯米完成签到,获得积分10
19秒前
77发布了新的文献求助10
19秒前
儒雅龙完成签到 ,获得积分10
20秒前
潇洒自由基完成签到 ,获得积分10
21秒前
21秒前
彩色夜阑完成签到,获得积分10
22秒前
quhayley应助george采纳,获得10
22秒前
22秒前
合适的不言应助小杜老师采纳,获得10
23秒前
啦咯是吗完成签到 ,获得积分10
25秒前
汉堡包应助缓慢的枫叶采纳,获得10
25秒前
LL发布了新的文献求助10
25秒前
cghmfgh完成签到,获得积分10
26秒前
宗晓凡完成签到,获得积分10
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159909
求助须知:如何正确求助?哪些是违规求助? 2810952
关于积分的说明 7890034
捐赠科研通 2469969
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630771
版权声明 602012