Optimal Investment Strategy for α-Robust Utility Maximization Problem

数学 数学优化 最大化 投资策略 效用最大化 投资(军事) 稳健优化 数理经济学 经济 微观经济学 利润(经济学) 政治 政治学 法学
作者
Zhou Yang,Danping Li,Yan Zeng,Guanting Liu
出处
期刊:Mathematics of Operations Research [Institute for Operations Research and the Management Sciences]
被引量:2
标识
DOI:10.1287/moor.2023.0076
摘要

In reality, investors are uncertain about the dynamics of risky asset returns. Therefore, investors prefer to make robust investment decisions. In this paper, we propose an α-robust utility maximization problem under uncertain parameters. The investor is allowed to invest in a financial market consisting of a risk-free asset and a risky asset. The uncertainty about the expected return rate is parameterized by a nonempty set. Different from most existing literature on robust utility maximization problems where investors are generally assumed to be extremely ambiguity averse because they tend to consider only expected utility in the worst-case scenario, we pay attention to the investors who are not only ambiguity averse but also ambiguity seeking. Under power utility, we provide the implicit function representations for the precommitted strategy, equilibrium strategy of the open-loop type, and equilibrium strategy of the closed-loop type. Some properties about the optimal trading strategies, the best-case and worst-case parameters under three different kinds of strategies, are provided. Funding: This work was supported by National Natural Science Foundation of China [Grants 12071147, 12171169, 12271171, 12371470, 71721001, 71931004, 72371256], the Shanghai Philosophy Social Science Planning Office Project [Grant 2022ZJB005], Fundamental Research Funds for the Central Universities [Grant 2022QKT001], the Excellent Young Team Project Natural Science Foundation of Guangdong Province of China [Grant 2023B1515040001], the Philosophy and Social Science Programming Foundation of Guangdong Province [Grant GD22CYJ17], the Nature Science Foundation of Guangdong Province of China [Grant 2022A1515011472], and the 111 Project [Grant B14019].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助灵巧一笑采纳,获得10
刚刚
wanci应助科研通管家采纳,获得30
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
1秒前
猪猪hero发布了新的文献求助10
1秒前
万能图书馆应助虾米采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
Friday完成签到,获得积分20
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
916应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
田田发布了新的文献求助10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
916应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得30
2秒前
2秒前
SYLH应助科研通管家采纳,获得20
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
916应助科研通管家采纳,获得10
2秒前
916应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
4秒前
聪明夏天完成签到,获得积分10
4秒前
mmb完成签到,获得积分10
4秒前
呆萌的萝完成签到,获得积分10
5秒前
拉长的战斗机完成签到,获得积分10
6秒前
尊敬的凝丹完成签到 ,获得积分10
6秒前
黎明完成签到,获得积分10
6秒前
Hello应助杰杰采纳,获得10
8秒前
春树完成签到,获得积分10
8秒前
8秒前
song完成签到,获得积分10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650