木筏
胶束
化学
生物物理学
膜
脂质双层
脂筏
药物输送
生物化学
有机化学
共聚物
生物
水溶液
聚合物
作者
Lina Zhao,Xing Tang,Yi Zhang,Hao Chen,Fude Sun
标识
DOI:10.1021/acs.jcim.4c00170
摘要
The lipid raft subdomains in cancer cell membranes play a key role in signal transduction, biomolecule recruitment, and drug transmembrane transport. Augmented membrane rigidity due to the formation of a lipid raft is unfavorable for the entry of drugs, a limiting factor in clinical oncology. The short-chain ceramide (CER) has been reported to promote drug entry into membranes and disrupt lipid raft formation, but the underlying mechanism is not well understood. We recently explored the carrier-membrane fusion dynamics of PEG-DPPE micelles in delivering doxorubicin (DOX). Based on the phase-segregated membrane model composed of DPPC/DIPC/CHOL/GM1/PIP2, we aim to explore the dynamic mechanism of the PEG-DPPE micelle-encapsulating DOXs in association with the raft-included cell membrane modulated by C8 acyl tail CERs. The results show that the lipid raft remains integrated and DOX-resistant subjected to free DOXs and the micelle-encapsulating ones. Addition of CERs disorganizes the lipid raft by pushing CHOL aside from DPPC. It subsequently allows for a good permeability for PEG-DPPE micelle-encapsulated DOXs, which penetrate deeper as CER concentration increases. GM1 is significant in guiding drugs' redistributing between bilayer phases, and the anionic PIP2 further helps DOXs attain the inner bilayer surface. These results elaborate on the perturbing effect of CERs on lipid raft stability, which provides a new comprehensive approach for further design of drug delivery systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI