WET-UNet: Wavelet integrated efficient transformer networks for nasopharyngeal carcinoma tumor segmentation

分割 计算机科学 人工智能 编码器 深度学习 图像分割 小波变换 小波 模式识别(心理学) 操作系统
作者
Yan Zeng,Jun Li,Zhe Zhao,Wei Liang,Penghui Zeng,Shao‐Dong Shen,Kun Zhang,Chong Shen
出处
期刊:Science Progress [SAGE Publishing]
卷期号:107 (2) 被引量:3
标识
DOI:10.1177/00368504241232537
摘要

Nasopharyngeal carcinoma is a malignant tumor that occurs in the epithelium and mucosal glands of the nasopharynx, and its pathological type is mostly poorly differentiated squamous cell carcinoma. Since the nasopharynx is located deep in the head and neck, early diagnosis and timely treatment are critical to patient survival. However, nasopharyngeal carcinoma tumors are small in size and vary widely in shape, and it is also a challenge for experienced doctors to delineate tumor contours. In addition, due to the special location of nasopharyngeal carcinoma, complex treatments such as radiotherapy or surgical resection are often required, so accurate pathological diagnosis is also very important for the selection of treatment options. However, the current deep learning segmentation model faces the problems of inaccurate segmentation and unstable segmentation process, which are mainly limited by the accuracy of data sets, fuzzy boundaries, and complex lines. In order to solve these two challenges, this article proposes a hybrid model WET-UNet based on the UNet network as a powerful alternative for nasopharyngeal cancer image segmentation. On the one hand, wavelet transform is integrated into UNet to enhance the lesion boundary information by using low-frequency components to adjust the encoder at low frequencies and optimize the subsequent computational process of the Transformer to improve the accuracy and robustness of image segmentation. On the other hand, the attention mechanism retains the most valuable pixels in the image for us, captures the remote dependencies, and enables the network to learn more representative features to improve the recognition ability of the model. Comparative experiments show that our network structure outperforms other models for nasopharyngeal cancer image segmentation, and we demonstrate the effectiveness of adding two modules to help tumor segmentation. The total data set of this article is 5000, and the ratio of training and verification is 8:2. In the experiment, accuracy = 85.2% and precision = 84.9% can show that our proposed model has good performance in nasopharyngeal cancer image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绿狗玩偶发布了新的文献求助10
1秒前
自然卷发布了新的文献求助30
1秒前
李健的小迷弟应助yy采纳,获得10
2秒前
英俊的铭应助小巧寻桃采纳,获得10
2秒前
科研通AI2S应助stt采纳,获得10
3秒前
123完成签到 ,获得积分10
6秒前
坚定的泥猴桃完成签到 ,获得积分10
7秒前
7秒前
同學你該吃藥了完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
10秒前
xvping完成签到,获得积分10
10秒前
11秒前
斯文败类应助闪闪落雁采纳,获得10
11秒前
11秒前
朴素炎彬完成签到,获得积分20
12秒前
汉堡包应助兀那狗子别跑采纳,获得10
12秒前
执着冷雁发布了新的文献求助10
13秒前
syp发布了新的文献求助10
14秒前
泡泡完成签到 ,获得积分10
14秒前
14秒前
orixero应助唐tang采纳,获得10
15秒前
含蓄的敏发布了新的文献求助10
15秒前
充电宝应助发文章12138采纳,获得10
15秒前
xiaoxiao发布了新的文献求助10
15秒前
包容煎饼发布了新的文献求助10
16秒前
卷王完成签到,获得积分10
16秒前
18秒前
荷包蛋发布了新的文献求助20
19秒前
HR112发布了新的文献求助10
20秒前
21秒前
dididi完成签到,获得积分10
21秒前
21秒前
21秒前
pluto应助超级的鞅采纳,获得10
22秒前
mingyahaoa完成签到 ,获得积分10
22秒前
深情安青应助syp采纳,获得10
22秒前
cc完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300240
求助须知:如何正确求助?哪些是违规求助? 4448171
关于积分的说明 13845185
捐赠科研通 4333829
什么是DOI,文献DOI怎么找? 2379156
邀请新用户注册赠送积分活动 1374314
关于科研通互助平台的介绍 1339962