亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

WET-UNet: Wavelet integrated efficient transformer networks for nasopharyngeal carcinoma tumor segmentation

分割 计算机科学 人工智能 编码器 深度学习 图像分割 小波变换 小波 模式识别(心理学) 操作系统
作者
Yan Zeng,Jun Li,Zhe Zhao,Wei Liang,Penghui Zeng,Shao‐Dong Shen,Kun Zhang,Chong Shen
出处
期刊:Science Progress [SAGE Publishing]
卷期号:107 (2) 被引量:3
标识
DOI:10.1177/00368504241232537
摘要

Nasopharyngeal carcinoma is a malignant tumor that occurs in the epithelium and mucosal glands of the nasopharynx, and its pathological type is mostly poorly differentiated squamous cell carcinoma. Since the nasopharynx is located deep in the head and neck, early diagnosis and timely treatment are critical to patient survival. However, nasopharyngeal carcinoma tumors are small in size and vary widely in shape, and it is also a challenge for experienced doctors to delineate tumor contours. In addition, due to the special location of nasopharyngeal carcinoma, complex treatments such as radiotherapy or surgical resection are often required, so accurate pathological diagnosis is also very important for the selection of treatment options. However, the current deep learning segmentation model faces the problems of inaccurate segmentation and unstable segmentation process, which are mainly limited by the accuracy of data sets, fuzzy boundaries, and complex lines. In order to solve these two challenges, this article proposes a hybrid model WET-UNet based on the UNet network as a powerful alternative for nasopharyngeal cancer image segmentation. On the one hand, wavelet transform is integrated into UNet to enhance the lesion boundary information by using low-frequency components to adjust the encoder at low frequencies and optimize the subsequent computational process of the Transformer to improve the accuracy and robustness of image segmentation. On the other hand, the attention mechanism retains the most valuable pixels in the image for us, captures the remote dependencies, and enables the network to learn more representative features to improve the recognition ability of the model. Comparative experiments show that our network structure outperforms other models for nasopharyngeal cancer image segmentation, and we demonstrate the effectiveness of adding two modules to help tumor segmentation. The total data set of this article is 5000, and the ratio of training and verification is 8:2. In the experiment, accuracy = 85.2% and precision = 84.9% can show that our proposed model has good performance in nasopharyngeal cancer image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Charlie完成签到 ,获得积分10
25秒前
大模型应助科研通管家采纳,获得10
41秒前
顾矜应助科研通管家采纳,获得10
2分钟前
kuoping完成签到,获得积分0
3分钟前
IShowSpeed完成签到,获得积分10
4分钟前
asd1576562308完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
xun完成签到,获得积分20
5分钟前
陈陈完成签到,获得积分10
5分钟前
SimonShaw完成签到,获得积分10
5分钟前
5分钟前
汪汪淬冰冰完成签到,获得积分10
5分钟前
陈陈关注了科研通微信公众号
6分钟前
6分钟前
7分钟前
陈陈发布了新的文献求助20
7分钟前
8分钟前
MchemG应助科研通管家采纳,获得100
8分钟前
MchemG应助科研通管家采纳,获得100
8分钟前
MchemG应助科研通管家采纳,获得100
8分钟前
MchemG应助科研通管家采纳,获得10
8分钟前
8分钟前
9分钟前
走啊走应助arniu2008采纳,获得10
10分钟前
cc完成签到 ,获得积分10
10分钟前
10分钟前
MchemG应助科研通管家采纳,获得10
10分钟前
黄景滨完成签到 ,获得积分10
11分钟前
曙光完成签到,获得积分10
11分钟前
11分钟前
优秀的dd完成签到 ,获得积分10
11分钟前
xxxy发布了新的文献求助30
11分钟前
12分钟前
MchemG应助科研通管家采纳,获得30
12分钟前
李东东完成签到 ,获得积分10
12分钟前
12分钟前
希望天下0贩的0应助xxxy采纳,获得30
12分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137824
求助须知:如何正确求助?哪些是违规求助? 4337446
关于积分的说明 13511562
捐赠科研通 4176213
什么是DOI,文献DOI怎么找? 2289894
邀请新用户注册赠送积分活动 1290432
关于科研通互助平台的介绍 1232270