WET-UNet: Wavelet integrated efficient transformer networks for nasopharyngeal carcinoma tumor segmentation

分割 计算机科学 人工智能 编码器 深度学习 图像分割 小波变换 小波 模式识别(心理学) 操作系统
作者
Yan Zeng,Jun Li,Zhe Zhao,Wei Liang,Penghui Zeng,Shao‐Dong Shen,Kun Zhang,Chong Shen
出处
期刊:Science Progress [SAGE]
卷期号:107 (2) 被引量:1
标识
DOI:10.1177/00368504241232537
摘要

Nasopharyngeal carcinoma is a malignant tumor that occurs in the epithelium and mucosal glands of the nasopharynx, and its pathological type is mostly poorly differentiated squamous cell carcinoma. Since the nasopharynx is located deep in the head and neck, early diagnosis and timely treatment are critical to patient survival. However, nasopharyngeal carcinoma tumors are small in size and vary widely in shape, and it is also a challenge for experienced doctors to delineate tumor contours. In addition, due to the special location of nasopharyngeal carcinoma, complex treatments such as radiotherapy or surgical resection are often required, so accurate pathological diagnosis is also very important for the selection of treatment options. However, the current deep learning segmentation model faces the problems of inaccurate segmentation and unstable segmentation process, which are mainly limited by the accuracy of data sets, fuzzy boundaries, and complex lines. In order to solve these two challenges, this article proposes a hybrid model WET-UNet based on the UNet network as a powerful alternative for nasopharyngeal cancer image segmentation. On the one hand, wavelet transform is integrated into UNet to enhance the lesion boundary information by using low-frequency components to adjust the encoder at low frequencies and optimize the subsequent computational process of the Transformer to improve the accuracy and robustness of image segmentation. On the other hand, the attention mechanism retains the most valuable pixels in the image for us, captures the remote dependencies, and enables the network to learn more representative features to improve the recognition ability of the model. Comparative experiments show that our network structure outperforms other models for nasopharyngeal cancer image segmentation, and we demonstrate the effectiveness of adding two modules to help tumor segmentation. The total data set of this article is 5000, and the ratio of training and verification is 8:2. In the experiment, accuracy = 85.2% and precision = 84.9% can show that our proposed model has good performance in nasopharyngeal cancer image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助木土采纳,获得10
刚刚
VOLUNTINA完成签到,获得积分20
刚刚
科研通AI2S应助YuGe采纳,获得10
1秒前
桃大宝宝剑完成签到 ,获得积分10
1秒前
juanjuan发布了新的文献求助10
3秒前
温暖听安完成签到,获得积分10
3秒前
蓝水半杯完成签到,获得积分10
3秒前
4秒前
浅惜完成签到,获得积分10
4秒前
5秒前
所所应助Fisher采纳,获得10
5秒前
hhh发布了新的文献求助10
5秒前
5秒前
Owen应助jyszh1001采纳,获得10
5秒前
柒柒发布了新的文献求助30
6秒前
6秒前
科研通AI2S应助冷傲的白卉采纳,获得10
6秒前
gangxiaxuan完成签到,获得积分10
6秒前
小二郎应助shenlee采纳,获得10
6秒前
水水完成签到,获得积分10
7秒前
7秒前
顺利小鸭子完成签到 ,获得积分10
7秒前
8秒前
8秒前
fangfang发布了新的文献求助10
9秒前
10秒前
Accepted发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
LLLLLL发布了新的文献求助10
12秒前
12秒前
perfect完成签到 ,获得积分10
12秒前
木土发布了新的文献求助10
13秒前
英姑应助海洋采纳,获得10
13秒前
小帅完成签到,获得积分10
13秒前
张秋雨发布了新的文献求助30
14秒前
小耿完成签到 ,获得积分10
14秒前
Fisher完成签到,获得积分10
14秒前
14秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156964
求助须知:如何正确求助?哪些是违规求助? 2808328
关于积分的说明 7877268
捐赠科研通 2466845
什么是DOI,文献DOI怎么找? 1313040
科研通“疑难数据库(出版商)”最低求助积分说明 630355
版权声明 601919