Efficient first principles based modeling via machine learning: from simple representations to high entropy materials

计算机科学 一般化 密度泛函理论 熵(时间箭头) 简单(哲学) 机器学习 理论计算机科学 人工智能 数学 计算化学 化学 量子力学 认识论 物理 数学分析 哲学
作者
Kangming Li,Kamal Choudhary,Brian DeCost,Michael T. Greenwood,Jason Hattrick‐Simpers
出处
期刊:Cornell University - arXiv
标识
DOI:10.1039/d4ta00982g
摘要

High-entropy materials (HEMs) have recently emerged as a significant category of materials, offering highly tunable properties. However, the scarcity of HEM data in existing density functional theory (DFT) databases, primarily due to computational expense, hinders the development of effective modeling strategies for computational materials discovery. In this study, we introduce an open DFT dataset of alloys and employ machine learning (ML) methods to investigate the material representations needed for HEM modeling. Utilizing high-throughput DFT calculations, we generate a comprehensive dataset of 84k structures, encompassing both ordered and disordered alloys across a spectrum of up to seven components and the entire compositional range. We apply descriptor-based models and graph neural networks to assess how material information is captured across diverse chemical-structural representations. We first evaluate the in-distribution performance of ML models to confirm their predictive accuracy. Subsequently, we demonstrate the capability of ML models to generalize between ordered and disordered structures, between low-order and high-order alloys, and between equimolar and non-equimolar compositions. Our findings suggest that ML models can generalize from cost-effective calculations of simpler systems to more complex scenarios. Additionally, we discuss the influence of dataset size and reveal that the information loss associated with the use of unrelaxed structures could significantly degrade the generalization performance. Overall, this research sheds light on several critical aspects of HEM modeling and offers insights for data-driven atomistic modeling of HEMs.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
236完成签到,获得积分10
刚刚
冰凌心恋发布了新的文献求助30
1秒前
2秒前
55555发布了新的文献求助30
2秒前
2秒前
袁心同发布了新的文献求助10
2秒前
可爱的函函应助balko采纳,获得10
2秒前
SHYSHYLONG完成签到,获得积分10
6秒前
可爱的函函应助学术小白采纳,获得10
8秒前
海聪天宇发布了新的文献求助10
9秒前
一日不看书智商输给猪完成签到,获得积分10
9秒前
英俊的铭应助LiShin采纳,获得10
10秒前
14秒前
14秒前
小医小鱼完成签到,获得积分10
16秒前
17秒前
17秒前
ww发布了新的文献求助10
20秒前
学术小白完成签到,获得积分10
20秒前
leiyang49应助精明的凡波采纳,获得10
20秒前
鞭霆发布了新的文献求助30
21秒前
21秒前
23秒前
洛洛发布了新的文献求助10
24秒前
可爱的函函应助袁心同采纳,获得30
26秒前
彪壮的凡波完成签到,获得积分10
27秒前
29秒前
科研通AI2S应助ni采纳,获得10
30秒前
31秒前
李爱国应助皮蛋瘦肉周采纳,获得10
33秒前
懵懂的电源完成签到 ,获得积分20
33秒前
充电宝应助panghuhu采纳,获得10
34秒前
洛洛完成签到,获得积分10
34秒前
35秒前
josy应助飘逸的三毒采纳,获得10
36秒前
弹剑作歌完成签到,获得积分10
37秒前
37秒前
科研小白发布了新的文献求助10
37秒前
kanglan完成签到,获得积分10
37秒前
38秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Natural Fractures in Coal 300
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387455
求助须知:如何正确求助?哪些是违规求助? 3000207
关于积分的说明 8789896
捐赠科研通 2686064
什么是DOI,文献DOI怎么找? 1471442
科研通“疑难数据库(出版商)”最低求助积分说明 680272
邀请新用户注册赠送积分活动 673062