亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Extracting the explore‐exploit intelligence of Physarum to manage the sustainability of an enterprise network

利用 计算机科学 浆膜 持续性 知识管理 计算机安全 多头绦虫 生态学 生物 细胞生物学
作者
Sami J. Habib,Paulvanna N. Marimuthu
出处
期刊:Expert Systems [Wiley]
标识
DOI:10.1111/exsy.13580
摘要

Abstract In this work, we enhance the sustainability of an enterprise network (EN) by complementing it with an expert system that apprehends the explore‐exploit behavioural intelligence of Physarum to survive against the attractive‐adversarial nutritional environment. EN sustainability is dynamic since it depends on how well EN can react to an adversarial environment. We capture a reverse analogy to characterize EN's workload‐environment with Physarum 's nutritive‐environment, where the high volume of workloads at the backbone network corresponds to a poor‐nutrient environment. The expert system explores EN to find out how to manage the workloads as Physarum handles its survivability, and exploits the users' workload patterns by grouping the highly communicating users together to redesign the network structure as Physarum 's intelligence to exploit energy from rich‐ and poor‐nutrient food sources through redesigned tubular structures. We define two factors, such as nutrient‐intensity and chemo‐attractant to aid the redesign process. EN evolves through a set of redesigned clusters with an objective function to maximize its sustainability for a given set of explored workloads by minimizing the workloads through the backbone. EN evolution terminates when there is no change in the backbone utilization, resembling the organism's stay in a dormant state until it experiences a favourable environment. Our experimental results on an EN with a higher volume of workloads at the backbone producing 14.26 kWh energy consumption demonstrated that the developed expert system reduced the energy consumption to 11.27 kWh, thus enhanced the sustainability from 21% to 61%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然的咖啡豆完成签到 ,获得积分10
5秒前
小旭不会飞完成签到,获得积分10
5秒前
6秒前
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
7秒前
9秒前
9秒前
9秒前
pppshoot发布了新的文献求助10
13秒前
捡垃圾的小破烂完成签到,获得积分10
17秒前
京羊完成签到 ,获得积分10
19秒前
岳莹晓完成签到 ,获得积分10
27秒前
27秒前
数值分析完成签到 ,获得积分10
30秒前
FyNic发布了新的文献求助10
32秒前
37秒前
37秒前
38秒前
FyNic完成签到,获得积分10
38秒前
於陵仲子发布了新的文献求助10
43秒前
43秒前
陈雨发布了新的文献求助10
43秒前
研友_n0gOKL发布了新的文献求助50
44秒前
小明发布了新的文献求助10
46秒前
背后书兰发布了新的文献求助10
47秒前
50秒前
Summer完成签到,获得积分10
51秒前
善学以致用应助於陵仲子采纳,获得10
54秒前
moiumuio完成签到,获得积分10
55秒前
我是老大应助背后书兰采纳,获得10
56秒前
香蕉觅云应助迷你的以丹采纳,获得10
57秒前
干净博涛完成签到 ,获得积分10
1分钟前
於陵仲子完成签到,获得积分10
1分钟前
陈雨完成签到,获得积分20
1分钟前
江竹兰完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307263
求助须知:如何正确求助?哪些是违规求助? 2940978
关于积分的说明 8500011
捐赠科研通 2615243
什么是DOI,文献DOI怎么找? 1428784
科研通“疑难数据库(出版商)”最低求助积分说明 663542
邀请新用户注册赠送积分活动 648382