Offline Planning and Online Learning Under Recovering Rewards

计算机科学 离线学习 在线学习 人工智能 万维网
作者
David Simchi‐Levi,Zeyu Zheng,Feng Zhu
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2021.04202
摘要

Motivated by emerging applications, such as live-streaming e-commerce, promotions, and recommendations, we introduce and solve a general class of nonstationary multi-armed bandit problems that have the following two features: (i) the decision maker can pull and collect rewards from up to [Formula: see text] out of N different arms in each time period and (ii) the expected reward of an arm immediately drops after it is pulled and then nonparametrically recovers as the arm’s idle time increases. With the objective of maximizing the expected cumulative reward over T time periods, we design a class of purely periodic policies that jointly set a period to pull each arm. For the proposed policies, we prove performance guarantees for both the offline and the online problems. For the offline problem when all model parameters are known, the proposed periodic policy obtains a long-run approximation ratio that is at the order of [Formula: see text], which is asymptotically optimal when K grows to infinity. For the online problem when the model parameters are unknown and need to be dynamically learned, we integrate the offline periodic policy with the upper confidence bound procedure to construct on online policy. The proposed online policy is proved to approximately have [Formula: see text] regret against the offline benchmark. Our framework and policy design may shed light on broader offline planning and online learning applications with nonstationary and recovering rewards. This paper was accepted by J. George Shanthikumar, data science. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.04202 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xinxin完成签到,获得积分10
刚刚
刚刚
刚刚
悦耳的冰枫完成签到 ,获得积分10
刚刚
现代的又柔完成签到,获得积分10
刚刚
羽毛发布了新的文献求助10
刚刚
samtol完成签到,获得积分10
1秒前
1秒前
Amber应助keran采纳,获得10
1秒前
xiongjian完成签到,获得积分10
1秒前
2秒前
2秒前
Orange应助喻辰星采纳,获得10
2秒前
leave发布了新的文献求助20
2秒前
2秒前
我是老大应助诗谙采纳,获得10
3秒前
欢欢发布了新的文献求助10
3秒前
十万大山兵大大完成签到,获得积分20
3秒前
科研通AI5应助科研欣路采纳,获得30
3秒前
kydd发布了新的文献求助10
5秒前
Papillon完成签到,获得积分10
5秒前
平淡的文龙完成签到,获得积分10
5秒前
盛夏完成签到,获得积分10
5秒前
贤惠的正豪完成签到,获得积分20
6秒前
7秒前
沛沛完成签到,获得积分10
8秒前
四月完成签到,获得积分10
8秒前
9秒前
常青完成签到,获得积分10
9秒前
WxChen发布了新的文献求助10
9秒前
guoguo完成签到,获得积分10
10秒前
MADKAI发布了新的文献求助10
10秒前
10秒前
今后应助.....采纳,获得10
10秒前
11秒前
快帮我找找完成签到,获得积分10
11秒前
11秒前
Wendy完成签到,获得积分10
11秒前
无花果应助XXF采纳,获得10
12秒前
juanjuan完成签到,获得积分20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740