Offline Planning and Online Learning Under Recovering Rewards

计算机科学 离线学习 在线学习 人工智能 万维网
作者
David Simchi‐Levi,Zeyu Zheng,Feng Zhu
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/mnsc.2021.04202
摘要

Motivated by emerging applications, such as live-streaming e-commerce, promotions, and recommendations, we introduce and solve a general class of nonstationary multi-armed bandit problems that have the following two features: (i) the decision maker can pull and collect rewards from up to [Formula: see text] out of N different arms in each time period and (ii) the expected reward of an arm immediately drops after it is pulled and then nonparametrically recovers as the arm’s idle time increases. With the objective of maximizing the expected cumulative reward over T time periods, we design a class of purely periodic policies that jointly set a period to pull each arm. For the proposed policies, we prove performance guarantees for both the offline and the online problems. For the offline problem when all model parameters are known, the proposed periodic policy obtains a long-run approximation ratio that is at the order of [Formula: see text], which is asymptotically optimal when K grows to infinity. For the online problem when the model parameters are unknown and need to be dynamically learned, we integrate the offline periodic policy with the upper confidence bound procedure to construct on online policy. The proposed online policy is proved to approximately have [Formula: see text] regret against the offline benchmark. Our framework and policy design may shed light on broader offline planning and online learning applications with nonstationary and recovering rewards. This paper was accepted by J. George Shanthikumar, data science. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.04202 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搞怪网络完成签到,获得积分10
刚刚
刚刚
YUNI发布了新的文献求助10
1秒前
1秒前
1秒前
虚幻初之发布了新的文献求助10
1秒前
科研通AI6.1应助微微采纳,获得10
2秒前
Meng完成签到,获得积分10
2秒前
2秒前
科研通AI6.1应助子木采纳,获得10
2秒前
MARIO完成签到 ,获得积分10
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
3秒前
书晴完成签到 ,获得积分10
3秒前
Mark应助科研通管家采纳,获得10
3秒前
轨迹应助科研通管家采纳,获得20
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得50
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
李健应助科研通管家采纳,获得10
4秒前
清醒完成签到,获得积分20
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
5秒前
我要发sci发布了新的文献求助10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
轨迹应助科研通管家采纳,获得20
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得50
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784847
求助须知:如何正确求助?哪些是违规求助? 5684004
关于积分的说明 15465575
捐赠科研通 4913804
什么是DOI,文献DOI怎么找? 2644941
邀请新用户注册赠送积分活动 1592845
关于科研通互助平台的介绍 1547234