Offline Planning and Online Learning Under Recovering Rewards

计算机科学 离线学习 在线学习 人工智能 万维网
作者
David Simchi‐Levi,Zeyu Zheng,Feng Zhu
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/mnsc.2021.04202
摘要

Motivated by emerging applications, such as live-streaming e-commerce, promotions, and recommendations, we introduce and solve a general class of nonstationary multi-armed bandit problems that have the following two features: (i) the decision maker can pull and collect rewards from up to [Formula: see text] out of N different arms in each time period and (ii) the expected reward of an arm immediately drops after it is pulled and then nonparametrically recovers as the arm’s idle time increases. With the objective of maximizing the expected cumulative reward over T time periods, we design a class of purely periodic policies that jointly set a period to pull each arm. For the proposed policies, we prove performance guarantees for both the offline and the online problems. For the offline problem when all model parameters are known, the proposed periodic policy obtains a long-run approximation ratio that is at the order of [Formula: see text], which is asymptotically optimal when K grows to infinity. For the online problem when the model parameters are unknown and need to be dynamically learned, we integrate the offline periodic policy with the upper confidence bound procedure to construct on online policy. The proposed online policy is proved to approximately have [Formula: see text] regret against the offline benchmark. Our framework and policy design may shed light on broader offline planning and online learning applications with nonstationary and recovering rewards. This paper was accepted by J. George Shanthikumar, data science. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.04202 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾南衣发布了新的文献求助10
1秒前
uiui完成签到,获得积分10
1秒前
李健应助药神L采纳,获得10
3秒前
Cici的新长征完成签到 ,获得积分10
3秒前
Genius发布了新的文献求助10
3秒前
追寻的夏波应助obito采纳,获得10
4秒前
科研通AI6应助周周周采纳,获得10
4秒前
6秒前
木木杨完成签到,获得积分10
7秒前
潇洒的冰淇淋完成签到,获得积分10
7秒前
8秒前
zzzzzzzzzzzz发布了新的文献求助10
8秒前
8秒前
Akim应助HUYAOWEI采纳,获得10
8秒前
无极微光应助HUYAOWEI采纳,获得20
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
深情的新儿完成签到,获得积分10
11秒前
虚幻的芷珊完成签到,获得积分10
12秒前
clio完成签到,获得积分10
12秒前
ri_290发布了新的文献求助10
13秒前
13秒前
所所应助耍酷问兰采纳,获得10
13秒前
scuter发布了新的文献求助10
13秒前
14秒前
渺渺发布了新的文献求助10
15秒前
jwjzsznb发布了新的文献求助50
15秒前
15秒前
阳光的衫发布了新的文献求助10
16秒前
爆爆发布了新的文献求助10
16秒前
stop here完成签到,获得积分10
16秒前
bkagyin应助scuter采纳,获得10
18秒前
思源应助Genius采纳,获得10
18秒前
啵啵龙完成签到,获得积分10
19秒前
20秒前
酷波er应助HUYAOWEI采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594302
求助须知:如何正确求助?哪些是违规求助? 4679974
关于积分的说明 14812661
捐赠科研通 4646837
什么是DOI,文献DOI怎么找? 2534882
邀请新用户注册赠送积分活动 1502862
关于科研通互助平台的介绍 1469497