CaMIL: Causal Multiple Instance Learning for Whole Slide Image Classification

人工智能 计算机科学 模式识别(心理学) 图像(数学) 机器学习 计算机视觉
作者
Kaitao Chen,Shiliang Sun,Jing Zhao
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (2): 1120-1128
标识
DOI:10.1609/aaai.v38i2.27873
摘要

Whole slide image (WSI) classification is a crucial component in automated pathology analysis. Due to the inherent challenges of high-resolution WSIs and the absence of patch-level labels, most of the proposed methods follow the multiple instance learning (MIL) formulation. While MIL has been equipped with excellent instance feature extractors and aggregators, it is prone to learn spurious associations that undermine the performance of the model. For example, relying solely on color features may lead to erroneous diagnoses due to spurious associations between the disease and the color of patches. To address this issue, we develop a causal MIL framework for WSI classification, effectively distinguishing between causal and spurious associations. Specifically, we use the expectation of the intervention P(Y | do(X)) for bag prediction rather than the traditional likelihood P(Y | X). By applying the front-door adjustment, the spurious association is effectively blocked, where the intervened mediator is aggregated from patch-level features. We evaluate our proposed method on two publicly available WSI datasets, Camelyon16 and TCGA-NSCLC. Our causal MIL framework shows outstanding performance and is plug-and-play, seamlessly integrating with various feature extractors and aggregators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
琳琳完成签到,获得积分10
2秒前
杨铭发布了新的文献求助10
2秒前
2秒前
隐形的冰海完成签到,获得积分20
2秒前
小蘑菇应助怕黑岱周采纳,获得10
3秒前
简单山槐发布了新的文献求助10
4秒前
一路硕博发布了新的文献求助10
4秒前
Tong完成签到,获得积分10
5秒前
5秒前
Hightowerliu18完成签到,获得积分0
5秒前
zt完成签到,获得积分10
5秒前
DGFR完成签到,获得积分10
6秒前
彪壮的剑愁完成签到,获得积分10
6秒前
Philo发布了新的文献求助10
6秒前
左岸SUPER完成签到,获得积分20
7秒前
仙女发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
纠纠发布了新的文献求助10
8秒前
G.Yee完成签到,获得积分10
9秒前
fujun完成签到,获得积分10
9秒前
9秒前
9秒前
cc20231022完成签到,获得积分10
10秒前
正直自行车完成签到,获得积分10
10秒前
11秒前
11秒前
JQ发布了新的文献求助30
11秒前
bin完成签到,获得积分10
11秒前
阳光下的星星完成签到,获得积分10
12秒前
ZZzz发布了新的文献求助10
13秒前
叽里呱啦发布了新的文献求助10
13秒前
爆米花应助phoebe_uu采纳,获得10
13秒前
13秒前
RebeccaHe完成签到,获得积分10
13秒前
zuoyou完成签到,获得积分10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303510
求助须知:如何正确求助?哪些是违规求助? 2937845
关于积分的说明 8484517
捐赠科研通 2611793
什么是DOI,文献DOI怎么找? 1426293
科研通“疑难数据库(出版商)”最低求助积分说明 662553
邀请新用户注册赠送积分活动 647076