CaMIL: Causal Multiple Instance Learning for Whole Slide Image Classification

人工智能 计算机科学 模式识别(心理学) 图像(数学) 机器学习 计算机视觉
作者
Kaitao Chen,Shiliang Sun,Jing Zhao
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (2): 1120-1128
标识
DOI:10.1609/aaai.v38i2.27873
摘要

Whole slide image (WSI) classification is a crucial component in automated pathology analysis. Due to the inherent challenges of high-resolution WSIs and the absence of patch-level labels, most of the proposed methods follow the multiple instance learning (MIL) formulation. While MIL has been equipped with excellent instance feature extractors and aggregators, it is prone to learn spurious associations that undermine the performance of the model. For example, relying solely on color features may lead to erroneous diagnoses due to spurious associations between the disease and the color of patches. To address this issue, we develop a causal MIL framework for WSI classification, effectively distinguishing between causal and spurious associations. Specifically, we use the expectation of the intervention P(Y | do(X)) for bag prediction rather than the traditional likelihood P(Y | X). By applying the front-door adjustment, the spurious association is effectively blocked, where the intervened mediator is aggregated from patch-level features. We evaluate our proposed method on two publicly available WSI datasets, Camelyon16 and TCGA-NSCLC. Our causal MIL framework shows outstanding performance and is plug-and-play, seamlessly integrating with various feature extractors and aggregators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温瞳完成签到,获得积分10
刚刚
细心故事完成签到,获得积分10
1秒前
abc123完成签到,获得积分10
1秒前
庄海棠完成签到 ,获得积分10
1秒前
小艾应助lawang采纳,获得10
1秒前
伶俐的雅寒应助lawang采纳,获得10
1秒前
完美世界应助John采纳,获得10
2秒前
小陀螺完成签到,获得积分10
2秒前
2秒前
RONG完成签到,获得积分10
2秒前
bdJ发布了新的文献求助10
2秒前
w_完成签到,获得积分10
3秒前
刘志超完成签到,获得积分10
4秒前
white完成签到,获得积分10
4秒前
科研天才完成签到,获得积分10
4秒前
Smile给Smile的求助进行了留言
4秒前
李小小飞完成签到 ,获得积分10
5秒前
Inter09完成签到,获得积分10
5秒前
果称完成签到,获得积分10
5秒前
索隆大人发布了新的文献求助30
6秒前
NICKPLZ完成签到,获得积分10
6秒前
7秒前
fdm完成签到,获得积分10
7秒前
整齐百褶裙完成签到 ,获得积分10
8秒前
坚强志泽完成签到 ,获得积分10
9秒前
9秒前
Maestro_S完成签到,获得积分0
9秒前
公龟应助lawang采纳,获得10
9秒前
ding应助lawang采纳,获得10
9秒前
公龟应助lawang采纳,获得10
9秒前
共享精神应助lawang采纳,获得10
9秒前
9秒前
斯文败类应助lawang采纳,获得10
9秒前
桐桐应助lawang采纳,获得10
9秒前
情怀应助lawang采纳,获得10
9秒前
万能图书馆应助lawang采纳,获得10
9秒前
大个应助lawang采纳,获得10
9秒前
星辰完成签到,获得积分10
9秒前
clock完成签到 ,获得积分10
11秒前
王金铭完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651671
求助须知:如何正确求助?哪些是违规求助? 4785545
关于积分的说明 15054930
捐赠科研通 4810310
什么是DOI,文献DOI怎么找? 2573067
邀请新用户注册赠送积分活动 1528952
关于科研通互助平台的介绍 1487935