计算机科学
特征(语言学)
融合
相(物质)
模式识别(心理学)
人工智能
物理
哲学
语言学
量子力学
作者
Pengyu Wang,Tao Ren,Rong Shen,Georgi M. Dimirovski,Xinliang Liu,Fanchun Meng
出处
期刊:IEEE Geoscience and Remote Sensing Letters
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:21: 1-5
标识
DOI:10.1109/lgrs.2024.3380894
摘要
With the recent improvement of deep learning (DL) techniques and computer hardware capabilities, neural networks are widely used to monitor massive sensor data and detect earthquakes in them. This makes designing fast, accurate, and generalized DL models necessary for an active field of research for automatic seismic phase picking. A seismic phase picking network called MFFnet is proposed to fuse power spectral density (PSD), expert knowledge, spectrograms, recurrence plots (RPs), and Gramian angle fields. The network uses fast Fourier convolution (FFC) on 2-D representations to extract more interpretable features. Considering the high proportion of noisy signals in field applications, MFFnet uses focal loss (FL) as the loss function to improve network accuracy. Experimental results show that MFFnet achieves precision, recall, and accuracy with 0.96, 0.98, and 0.98, respectively, in seismic phase detection tasks. Shapley value is used to evaluate the relationship between features and network predictions. Compared with other DL networks, the feature extraction approach used in this letter is more explanatory and provides greater confidence in the results.
科研通智能强力驱动
Strongly Powered by AbleSci AI