Region-Disentangled Diffusion Model for High-Fidelity PPG-to-ECG Translation

忠诚 翻译(生物学) 扩散 计算机科学 高保真 人工智能 物理 生物 电信 声学 生物化学 信使核糖核酸 基因 热力学
作者
Debaditya Shome,Pritam Sarkar,Ali Etemad
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (13): 15009-15019
标识
DOI:10.1609/aaai.v38i13.29422
摘要

The high prevalence of cardiovascular diseases (CVDs) calls for accessible and cost-effective continuous cardiac monitoring tools. Despite Electrocardiography (ECG) being the gold standard, continuous monitoring remains a challenge, leading to the exploration of Photoplethysmography (PPG), a promising but more basic alternative available in consumer wearables. This notion has recently spurred interest in translating PPG to ECG signals. In this work, we introduce Region-Disentangled Diffusion Model (RDDM), a novel diffusion model designed to capture the complex temporal dynamics of ECG. Traditional Diffusion models like Denoising Diffusion Probabilistic Models (DDPM) face challenges in capturing such nuances due to the indiscriminate noise addition process across the entire signal. Our proposed RDDM overcomes such limitations by incorporating a novel forward process that selectively adds noise to specific regions of interest (ROI) such as QRS complex in ECG signals, and a reverse process that disentangles the denoising of ROI and non-ROI regions. Quantitative experiments demonstrate that RDDM can generate high-fidelity ECG from PPG in as few as 10 diffusion steps, making it highly effective and computationally efficient. Additionally, to rigorously validate the usefulness of the generated ECG signals, we introduce CardioBench, a comprehensive evaluation benchmark for a variety of cardiac-related tasks including heart rate and blood pressure estimation, stress classification, and the detection of atrial fibrillation and diabetes. Our thorough experiments show that RDDM achieves state-of-the-art performance on CardioBench. To the best of our knowledge, RDDM is the first diffusion model for cross-modal signal-to-signal translation in the bio-signal domain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小学生1号发布了新的文献求助10
刚刚
66完成签到 ,获得积分10
1秒前
1秒前
1秒前
快去爬山完成签到 ,获得积分10
1秒前
MING完成签到,获得积分20
1秒前
3秒前
JYX完成签到 ,获得积分10
4秒前
4秒前
4秒前
lL完成签到,获得积分10
4秒前
个性的小丸子给云中雁的求助进行了留言
5秒前
Parazlee关注了科研通微信公众号
5秒前
MING发布了新的文献求助10
5秒前
6秒前
Cristina2024发布了新的文献求助10
7秒前
犯困发布了新的文献求助30
8秒前
9秒前
9秒前
大个应助贤惠的靖易采纳,获得10
10秒前
cqy发布了新的文献求助10
10秒前
追寻幻翠完成签到 ,获得积分10
10秒前
NZH发布了新的文献求助10
10秒前
10秒前
11秒前
一颗egg完成签到,获得积分10
11秒前
无名老大应助Ting采纳,获得100
11秒前
12秒前
乐乐应助超级瑶瑶采纳,获得10
12秒前
情怀应助友好小蘑菇采纳,获得20
13秒前
14秒前
14秒前
15秒前
外向的听白完成签到,获得积分10
15秒前
33发布了新的文献求助10
15秒前
ysca发布了新的文献求助10
15秒前
CipherSage应助mzh采纳,获得10
15秒前
槐序深巷完成签到,获得积分10
16秒前
ZX完成签到 ,获得积分10
16秒前
CXR完成签到,获得积分10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454924
求助须知:如何正确求助?哪些是违规求助? 3050185
关于积分的说明 9020562
捐赠科研通 2738826
什么是DOI,文献DOI怎么找? 1502304
科研通“疑难数据库(出版商)”最低求助积分说明 694480
邀请新用户注册赠送积分活动 693178