已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning in modelling the urban thermal field variance index and assessing the impacts of urban land expansion on seasonal thermal environment

索引(排版) 环境科学 差异(会计) 领域(数学) 城市热岛 热的 气象学 地理 土木工程 工程类 计算机科学 经济 数学 会计 万维网 纯数学
作者
Maomao Zhang,Shukui Tan,Cheng Zhang,Enqing Chen
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:106: 105345-105345 被引量:79
标识
DOI:10.1016/j.scs.2024.105345
摘要

Land use practices in urban areas exert a profound influence on the urban thermal environment and the pursuit of sustainable development. This paper aims to investigate and forecast future changes in land use/land cover (LULC) and their response to seasonal variations in land surface temperatures (LST), the urban thermal field variance index (UTFVI), and the urban heat island effect (UHI) during summer and winter. The artificial neural network based on cellular automata (ANN-CA) and the improved whale optimization based on long short-term memory (WOA-LSTM) algorithms are used to predict the LULC, UTFVI, and UHI characteristics in the Pearl River Delta (PRD) urban agglomeration. The results show that urban land will likely expand from 4335 km2 to 8292 km2 from 2000 to 2030. The LST continues to increase, and the maximum temperature in summer will likely increase to 44.6°C in 2030. Without the intervention of effective cooling measures, the area with LST≥35°C will likely increase to 4873 km2, and the proportion of areas with LST≥20°C will likely reach 63.72% in the winter of 2030. The strongest level of UTFVI expansion is significant in summer, and the area is likely to increase by 83.64% in 2030. Urban land has the highest percentage in the high temperature region relative to other land use categories. Similar to the trend of LST changes, UHI is expected to notably increase by 2030, with minimum and maximum UHI values projected to rise during both summer and winter. This study may provide new perspectives on thermal environment management and sustainable urban development in similar areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
结实的小土豆完成签到 ,获得积分10
3秒前
光亮的冰薇完成签到 ,获得积分10
6秒前
在水一方应助勤劳莹芝采纳,获得10
18秒前
orixero应助oyxz采纳,获得10
18秒前
HONG完成签到 ,获得积分10
19秒前
19秒前
Jasper应助科研通管家采纳,获得10
20秒前
木又应助科研通管家采纳,获得10
21秒前
SciGPT应助科研通管家采纳,获得10
21秒前
21秒前
Raven应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
哈基米德应助科研通管家采纳,获得10
21秒前
哈基米德应助科研通管家采纳,获得10
21秒前
21秒前
哈基米德应助科研通管家采纳,获得10
21秒前
哈基米德应助科研通管家采纳,获得25
21秒前
打打应助科研通管家采纳,获得10
21秒前
22秒前
彭于晏应助科研通管家采纳,获得10
22秒前
Criminology34应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
酷波er应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
xxfsx应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
22秒前
23秒前
25秒前
yyyhhhzzz0123发布了新的文献求助30
26秒前
arisw发布了新的文献求助10
26秒前
zhs发布了新的文献求助10
29秒前
31秒前
生椰拿铁死忠粉应助minya采纳,获得20
36秒前
妮妮完成签到 ,获得积分10
36秒前
李健的小迷弟应助北斗采纳,获得10
40秒前
坚定的泥猴桃完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290666
求助须知:如何正确求助?哪些是违规求助? 4442020
关于积分的说明 13828956
捐赠科研通 4324772
什么是DOI,文献DOI怎么找? 2373838
邀请新用户注册赠送积分活动 1369227
关于科研通互助平台的介绍 1333275