Uncovering the Over-Smoothing Challenge in Image Super-Resolution: Entropy-Based Quantification and Contrastive Optimization

平滑的 计算机科学 熵(时间箭头) 人工智能 基本事实 最优化问题 聚类分析 算法 模式识别(心理学) 计算机视觉 物理 量子力学
作者
Tianshuo Xu,Lijiang Li,朋子 鍵弥,Xiawu Zheng,Fei Chao,Rongrong Ji,Yonghong Tian,Qiang Shen
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (9): 6199-6215 被引量:2
标识
DOI:10.1109/tpami.2024.3378704
摘要

PSNR-oriented models are a critical class of super-resolution models with applications across various fields. However, these models tend to generate over-smoothed images, a problem that has been analyzed previously from the perspectives of models or loss functions, but without taking into account the impact of data properties. In this paper, we present a novel phenomenon that we term the center-oriented optimization (COO) problem, where a model's output converges towards the center point of similar high-resolution images, rather than towards the ground truth. We demonstrate that the strength of this problem is related to the uncertainty of data, which we quantify using entropy. We prove that as the entropy of high-resolution images increases, their center point will move further away from the clean image distribution, and the model will generate over-smoothed images. Implicitly optimizing the COO problem, perceptual-driven approaches such as perceptual loss, model structure optimization, or GAN-based methods can be viewed. We propose an explicit solution to the COO problem, called Detail Enhanced Contrastive Loss (DECLoss). DECLoss utilizes the clustering property of contrastive learning to directly reduce the variance of the potential high-resolution distribution and thereby decrease the entropy. We evaluate DECLoss on multiple super-resolution benchmarks and demonstrate that it improves the perceptual quality of PSNR-oriented models. Moreover, when applied to GAN-based methods, such as RaGAN, DECLoss helps to achieve state-of-the-art performance, such as 0.093 LPIPS with 24.51 PSNR on 4× downsampled Urban100, validating the effectiveness and generalization of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吡咯爱成环应助BASS采纳,获得10
刚刚
BPX完成签到,获得积分10
刚刚
火辣蛤蟆完成签到,获得积分10
1秒前
海盗完成签到,获得积分10
1秒前
zhang完成签到 ,获得积分10
2秒前
hetao286完成签到,获得积分10
2秒前
2秒前
fat完成签到,获得积分10
3秒前
ttkd11完成签到,获得积分10
4秒前
以韓完成签到 ,获得积分10
5秒前
zhiyu完成签到,获得积分10
5秒前
聖璕完成签到,获得积分10
6秒前
feiyu完成签到,获得积分10
6秒前
cherry bomb完成签到,获得积分10
8秒前
gy完成签到,获得积分10
9秒前
苏州小北完成签到,获得积分20
10秒前
gouyanju完成签到,获得积分10
10秒前
10秒前
赵亚南完成签到,获得积分10
10秒前
11秒前
dzc完成签到,获得积分10
11秒前
美好寒梦完成签到,获得积分10
12秒前
xiumei1998完成签到,获得积分10
12秒前
ypp完成签到,获得积分10
12秒前
DQ8733完成签到,获得积分10
13秒前
发酒疯很方便吃完成签到,获得积分10
13秒前
木勿忘完成签到,获得积分10
13秒前
nykal完成签到 ,获得积分10
14秒前
sangsang完成签到,获得积分10
14秒前
everyone_woo完成签到,获得积分10
14秒前
田二亩完成签到,获得积分10
14秒前
大虫完成签到,获得积分10
15秒前
16秒前
kyle完成签到 ,获得积分10
16秒前
Jerry完成签到,获得积分10
16秒前
无尘完成签到 ,获得积分10
16秒前
exosome完成签到,获得积分10
16秒前
rubywoojennie发布了新的文献求助10
16秒前
Diamond发布了新的文献求助10
17秒前
小坤同学完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3510889
求助须知:如何正确求助?哪些是违规求助? 3093660
关于积分的说明 9218106
捐赠科研通 2788030
什么是DOI,文献DOI怎么找? 1529995
邀请新用户注册赠送积分活动 710681
科研通“疑难数据库(出版商)”最低求助积分说明 706311