Adaptive closed‐loop resuscitation controllers for hemorrhagic shock resuscitation

复苏 控制器(灌溉) 计算机科学 自适应控制 医学 控制(管理) 急诊医学 人工智能 农学 生物
作者
Saul J. Vega,David Berard,Guy Avital,Evan Ross,Eric J. Snider
出处
期刊:Transfusion [Wiley]
卷期号:63 (S3) 被引量:5
标识
DOI:10.1111/trf.17377
摘要

After hemorrhage control, fluid resuscitation is the most important intervention for hemorrhage. Even skilled providers can find resuscitation challenging to manage, especially when multiple patients require care. In the future, attention-demanding medical tasks like fluid resuscitation for hemorrhage patients may be reassigned to autonomous medical systems when availability of skilled human providers is limited, such as in austere military settings and mass casualty incidents. Central to this endeavor is the development and optimization of control architectures for physiological closed-loop control systems (PCLCs). PCLCs can take many forms, from simple table look-up methods to widely used proportional-integral-derivative or fuzzy-logic control theory. Here, we describe the design and optimization of multiple adaptive resuscitation controllers (ARCs) that we have purpose-built for the resuscitation of hemorrhaging patients.Three ARC designs were evaluated that measured pressure-volume responsiveness using different methodologies during resuscitation from which adapted infusion rates were calculated. These controllers were adaptive in that they estimated required infusion flow rates based on measured volume responsiveness. A previously developed hardware-in-loop test platform was used to evaluate the ARCs implementations across several hemorrhage scenarios.After optimization, we found that our purpose-built controllers outperformed traditional control system architecture as embodied in our previously developed dual-input fuzzy-logic controller.Future efforts will focus on engineering our purpose-built control systems to be robust to noise in the physiological signal coming to the controller from the patient as well as testing controller performance across a range of test scenarios and in vivo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲤鱼向珊完成签到,获得积分10
1秒前
orixero应助迷人的雪珍采纳,获得10
1秒前
科研通AI5应助峪星采纳,获得10
2秒前
orixero应助Giggle采纳,获得10
3秒前
小马甲应助称心热狗采纳,获得10
3秒前
wjj119完成签到,获得积分10
5秒前
今后应助shiyu采纳,获得10
6秒前
QhL完成签到,获得积分10
7秒前
细腻友安完成签到,获得积分20
8秒前
9秒前
p454q完成签到 ,获得积分10
11秒前
13秒前
14秒前
幸运鹅47完成签到,获得积分10
14秒前
16秒前
+231656发布了新的文献求助10
16秒前
打打应助Lifetour采纳,获得10
17秒前
18秒前
称心热狗发布了新的文献求助10
18秒前
搜集达人应助叶y采纳,获得10
18秒前
嗯哼哈哈发布了新的文献求助30
18秒前
CAE上路到上吊完成签到,获得积分10
19秒前
田様应助刘嘻嘻采纳,获得10
20秒前
符语风完成签到 ,获得积分10
20秒前
Wayne发布了新的文献求助10
21秒前
天天完成签到 ,获得积分10
21秒前
abai发布了新的文献求助10
22秒前
健忘蘑菇完成签到,获得积分10
23秒前
+231656完成签到,获得积分20
24秒前
称心热狗完成签到,获得积分10
24秒前
28秒前
君儿和闪电完成签到 ,获得积分10
28秒前
smottom应助怪杰采纳,获得10
28秒前
SYLH应助科研通管家采纳,获得10
30秒前
Hello应助科研通管家采纳,获得10
30秒前
云汐儿完成签到,获得积分10
30秒前
SYLH应助科研通管家采纳,获得10
30秒前
FIN应助细腻友安采纳,获得30
31秒前
SYLH应助科研通管家采纳,获得10
31秒前
领导范儿应助科研通管家采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511908
关于积分的说明 11160656
捐赠科研通 3246646
什么是DOI,文献DOI怎么找? 1793433
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403