Adaptive closed‐loop resuscitation controllers for hemorrhagic shock resuscitation

复苏 控制器(灌溉) 计算机科学 自适应控制 医学 控制(管理) 急诊医学 人工智能 农学 生物
作者
Saul J. Vega,David Berard,Guy Avital,Evan Ross,Eric J. Snider
出处
期刊:Transfusion [Wiley]
卷期号:63 (S3) 被引量:5
标识
DOI:10.1111/trf.17377
摘要

After hemorrhage control, fluid resuscitation is the most important intervention for hemorrhage. Even skilled providers can find resuscitation challenging to manage, especially when multiple patients require care. In the future, attention-demanding medical tasks like fluid resuscitation for hemorrhage patients may be reassigned to autonomous medical systems when availability of skilled human providers is limited, such as in austere military settings and mass casualty incidents. Central to this endeavor is the development and optimization of control architectures for physiological closed-loop control systems (PCLCs). PCLCs can take many forms, from simple table look-up methods to widely used proportional-integral-derivative or fuzzy-logic control theory. Here, we describe the design and optimization of multiple adaptive resuscitation controllers (ARCs) that we have purpose-built for the resuscitation of hemorrhaging patients.Three ARC designs were evaluated that measured pressure-volume responsiveness using different methodologies during resuscitation from which adapted infusion rates were calculated. These controllers were adaptive in that they estimated required infusion flow rates based on measured volume responsiveness. A previously developed hardware-in-loop test platform was used to evaluate the ARCs implementations across several hemorrhage scenarios.After optimization, we found that our purpose-built controllers outperformed traditional control system architecture as embodied in our previously developed dual-input fuzzy-logic controller.Future efforts will focus on engineering our purpose-built control systems to be robust to noise in the physiological signal coming to the controller from the patient as well as testing controller performance across a range of test scenarios and in vivo.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助丹D采纳,获得10
刚刚
刚刚
科研通AI6应助正直的西牛采纳,获得10
1秒前
清新的一笑完成签到,获得积分10
1秒前
yqsf789发布了新的文献求助10
1秒前
大模型应助dx采纳,获得10
1秒前
aka拉粑粑大王完成签到,获得积分10
1秒前
QJH关注了科研通微信公众号
1秒前
fx发布了新的文献求助10
1秒前
活力的小小完成签到,获得积分10
1秒前
小欣完成签到,获得积分10
1秒前
1秒前
科研通AI6应助黄文洁采纳,获得10
1秒前
引觞甫完成签到,获得积分10
2秒前
2秒前
2秒前
兔子发布了新的文献求助10
2秒前
3秒前
3秒前
JamesPei应助yuanyuan采纳,获得10
3秒前
linjiebro完成签到,获得积分10
4秒前
小螃蟹完成签到 ,获得积分10
4秒前
Marvel完成签到,获得积分20
4秒前
幽默梦之完成签到 ,获得积分10
4秒前
Hydaniel完成签到,获得积分10
4秒前
东郭一斩完成签到,获得积分10
4秒前
4秒前
sawyer完成签到,获得积分20
5秒前
明亮白昼完成签到,获得积分10
5秒前
科目三应助xiaoxin采纳,获得10
5秒前
科研小废物完成签到,获得积分20
6秒前
热情的黑猫完成签到,获得积分10
6秒前
琪琪完成签到,获得积分10
6秒前
情怀应助song采纳,获得10
6秒前
6秒前
zxx发布了新的文献求助10
6秒前
Marvel发布了新的文献求助10
6秒前
小蘑材完成签到,获得积分10
7秒前
贪玩的傲菡完成签到 ,获得积分10
7秒前
彳亍1117应助科研小白鼠采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516957
求助须知:如何正确求助?哪些是违规求助? 4609934
关于积分的说明 14519101
捐赠科研通 4546890
什么是DOI,文献DOI怎么找? 2491407
邀请新用户注册赠送积分活动 1473077
关于科研通互助平台的介绍 1444956