Adaptive closed‐loop resuscitation controllers for hemorrhagic shock resuscitation

复苏 控制器(灌溉) 计算机科学 自适应控制 医学 控制(管理) 急诊医学 人工智能 农学 生物
作者
Saul J. Vega,David Berard,Guy Avital,Evan Ross,Eric J. Snider
出处
期刊:Transfusion [Wiley]
卷期号:63 (S3) 被引量:5
标识
DOI:10.1111/trf.17377
摘要

After hemorrhage control, fluid resuscitation is the most important intervention for hemorrhage. Even skilled providers can find resuscitation challenging to manage, especially when multiple patients require care. In the future, attention-demanding medical tasks like fluid resuscitation for hemorrhage patients may be reassigned to autonomous medical systems when availability of skilled human providers is limited, such as in austere military settings and mass casualty incidents. Central to this endeavor is the development and optimization of control architectures for physiological closed-loop control systems (PCLCs). PCLCs can take many forms, from simple table look-up methods to widely used proportional-integral-derivative or fuzzy-logic control theory. Here, we describe the design and optimization of multiple adaptive resuscitation controllers (ARCs) that we have purpose-built for the resuscitation of hemorrhaging patients.Three ARC designs were evaluated that measured pressure-volume responsiveness using different methodologies during resuscitation from which adapted infusion rates were calculated. These controllers were adaptive in that they estimated required infusion flow rates based on measured volume responsiveness. A previously developed hardware-in-loop test platform was used to evaluate the ARCs implementations across several hemorrhage scenarios.After optimization, we found that our purpose-built controllers outperformed traditional control system architecture as embodied in our previously developed dual-input fuzzy-logic controller.Future efforts will focus on engineering our purpose-built control systems to be robust to noise in the physiological signal coming to the controller from the patient as well as testing controller performance across a range of test scenarios and in vivo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿冰狸子发布了新的文献求助10
刚刚
敲无聊发布了新的文献求助10
刚刚
SciGPT应助爱吃蛋饼的zach采纳,获得10
2秒前
zhaofx发布了新的文献求助10
2秒前
3秒前
4秒前
aslink完成签到,获得积分10
4秒前
4秒前
6秒前
领导范儿应助liu采纳,获得10
6秒前
聚乙烯醇完成签到,获得积分10
6秒前
Owen应助黄迪迪采纳,获得10
6秒前
搜集达人应助solitude采纳,获得10
7秒前
泯珉发布了新的文献求助10
7秒前
不周完成签到,获得积分20
7秒前
shuineng7发布了新的文献求助30
8秒前
8秒前
guandada完成签到 ,获得积分10
9秒前
科研野狗发布了新的文献求助10
10秒前
HEIKU应助Simonn29采纳,获得10
10秒前
11秒前
哈哈哈完成签到,获得积分10
11秒前
ding应助zhaofx采纳,获得10
12秒前
jiajie_qin应助Green采纳,获得30
13秒前
调研昵称发布了新的文献求助10
15秒前
慕青应助小竹爱科研采纳,获得10
15秒前
JamesPei应助可爱多885采纳,获得10
17秒前
18秒前
shuineng7完成签到,获得积分20
19秒前
19秒前
19秒前
20秒前
21秒前
Astrolia完成签到,获得积分10
22秒前
12发布了新的文献求助10
22秒前
23秒前
黄迪迪发布了新的文献求助10
24秒前
邵不知道叫什么帅献华完成签到,获得积分10
24秒前
垃圾二硫自组装纳米粒完成签到,获得积分10
24秒前
研友_VZG7GZ应助12采纳,获得10
26秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Injection and Compression Molding Fundamentals 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422167
求助须知:如何正确求助?哪些是违规求助? 3022590
关于积分的说明 8901481
捐赠科研通 2709974
什么是DOI,文献DOI怎么找? 1486247
科研通“疑难数据库(出版商)”最低求助积分说明 686963
邀请新用户注册赠送积分活动 682186