Trialling a Large Language Model (ChatGPT) in General Practice With the Applied Knowledge Test: Observational Study Demonstrating Opportunities and Limitations in Primary Care

优势和劣势 考试(生物学) 一致性(知识库) 观察研究 生成语法 主题(文档) 答疑 心理学 计算机科学 人工智能 万维网 社会心理学 数学 统计 生物 古生物学
作者
Arun James Thirunavukarasu,Refaat Hassan,Shathar Mahmood,Rohan Sanghera,Kara Barzangi,Mohanned El Mukashfi,Sachin Shah
出处
期刊:JMIR medical education [JMIR Publications Inc.]
卷期号:9: e46599-e46599 被引量:109
标识
DOI:10.2196/46599
摘要

Large language models exhibiting human-level performance in specialized tasks are emerging; examples include Generative Pretrained Transformer 3.5, which underlies the processing of ChatGPT. Rigorous trials are required to understand the capabilities of emerging technology, so that innovation can be directed to benefit patients and practitioners.Here, we evaluated the strengths and weaknesses of ChatGPT in primary care using the Membership of the Royal College of General Practitioners Applied Knowledge Test (AKT) as a medium.AKT questions were sourced from a web-based question bank and 2 AKT practice papers. In total, 674 unique AKT questions were inputted to ChatGPT, with the model's answers recorded and compared to correct answers provided by the Royal College of General Practitioners. Each question was inputted twice in separate ChatGPT sessions, with answers on repeated trials compared to gauge consistency. Subject difficulty was gauged by referring to examiners' reports from 2018 to 2022. Novel explanations from ChatGPT-defined as information provided that was not inputted within the question or multiple answer choices-were recorded. Performance was analyzed with respect to subject, difficulty, question source, and novel model outputs to explore ChatGPT's strengths and weaknesses.Average overall performance of ChatGPT was 60.17%, which is below the mean passing mark in the last 2 years (70.42%). Accuracy differed between sources (P=.04 and .06). ChatGPT's performance varied with subject category (P=.02 and .02), but variation did not correlate with difficulty (Spearman ρ=-0.241 and -0.238; P=.19 and .20). The proclivity of ChatGPT to provide novel explanations did not affect accuracy (P>.99 and .23).Large language models are approaching human expert-level performance, although further development is required to match the performance of qualified primary care physicians in the AKT. Validated high-performance models may serve as assistants or autonomous clinical tools to ameliorate the general practice workforce crisis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
椰子应助yanying_shc采纳,获得10
1秒前
金开完成签到,获得积分10
2秒前
爱吃糖果的小象完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
科研通AI6应助漂亮的乐松采纳,获得10
4秒前
科研通AI6应助莫名其妙采纳,获得10
4秒前
4秒前
乃禾完成签到,获得积分10
5秒前
星辰0817完成签到 ,获得积分10
5秒前
5秒前
无极微光应助浪里白条采纳,获得20
6秒前
万能图书馆应助一百度黑采纳,获得10
6秒前
Dream完成签到 ,获得积分10
6秒前
龙腾岁月完成签到 ,获得积分10
6秒前
zhangqy完成签到,获得积分10
7秒前
一针超人发布了新的文献求助10
8秒前
菁菁菁瑜完成签到,获得积分10
8秒前
8秒前
8秒前
读博的小武完成签到,获得积分10
8秒前
张志超发布了新的文献求助10
9秒前
吉良吉影完成签到,获得积分20
9秒前
义气的代柔关注了科研通微信公众号
10秒前
11秒前
JUNYI完成签到,获得积分20
12秒前
爱听歌时光完成签到,获得积分10
12秒前
吉良吉影发布了新的文献求助10
13秒前
雾凇完成签到 ,获得积分10
13秒前
喜悦的刚完成签到,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
Jasper应助负责惊蛰采纳,获得10
15秒前
小冯爱睡觉完成签到,获得积分10
16秒前
16秒前
rwewe发布了新的文献求助10
16秒前
Unifrog完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646393
求助须知:如何正确求助?哪些是违规求助? 4771261
关于积分的说明 15034850
捐赠科研通 4805220
什么是DOI,文献DOI怎么找? 2569528
邀请新用户注册赠送积分活动 1526533
关于科研通互助平台的介绍 1485849