Trialling a Large Language Model (ChatGPT) in General Practice With the Applied Knowledge Test: Observational Study Demonstrating Opportunities and Limitations in Primary Care

优势和劣势 考试(生物学) 一致性(知识库) 观察研究 生成语法 主题(文档) 答疑 心理学 计算机科学 人工智能 万维网 社会心理学 数学 统计 生物 古生物学
作者
Arun James Thirunavukarasu,Refaat Hassan,Shathar Mahmood,Rohan Sanghera,Kara Barzangi,Mohanned El Mukashfi,Sachin Shah
出处
期刊:JMIR medical education [JMIR Publications Inc.]
卷期号:9: e46599-e46599 被引量:109
标识
DOI:10.2196/46599
摘要

Large language models exhibiting human-level performance in specialized tasks are emerging; examples include Generative Pretrained Transformer 3.5, which underlies the processing of ChatGPT. Rigorous trials are required to understand the capabilities of emerging technology, so that innovation can be directed to benefit patients and practitioners.Here, we evaluated the strengths and weaknesses of ChatGPT in primary care using the Membership of the Royal College of General Practitioners Applied Knowledge Test (AKT) as a medium.AKT questions were sourced from a web-based question bank and 2 AKT practice papers. In total, 674 unique AKT questions were inputted to ChatGPT, with the model's answers recorded and compared to correct answers provided by the Royal College of General Practitioners. Each question was inputted twice in separate ChatGPT sessions, with answers on repeated trials compared to gauge consistency. Subject difficulty was gauged by referring to examiners' reports from 2018 to 2022. Novel explanations from ChatGPT-defined as information provided that was not inputted within the question or multiple answer choices-were recorded. Performance was analyzed with respect to subject, difficulty, question source, and novel model outputs to explore ChatGPT's strengths and weaknesses.Average overall performance of ChatGPT was 60.17%, which is below the mean passing mark in the last 2 years (70.42%). Accuracy differed between sources (P=.04 and .06). ChatGPT's performance varied with subject category (P=.02 and .02), but variation did not correlate with difficulty (Spearman ρ=-0.241 and -0.238; P=.19 and .20). The proclivity of ChatGPT to provide novel explanations did not affect accuracy (P>.99 and .23).Large language models are approaching human expert-level performance, although further development is required to match the performance of qualified primary care physicians in the AKT. Validated high-performance models may serve as assistants or autonomous clinical tools to ameliorate the general practice workforce crisis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助要减肥的乐曲采纳,获得10
刚刚
1秒前
曹丛通发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
4秒前
鲤鱼谷秋发布了新的文献求助10
5秒前
桐桐应助杏杏采纳,获得10
5秒前
5秒前
5秒前
李爱国应助我的文献采纳,获得10
5秒前
Rasink完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
零度火发布了新的文献求助10
7秒前
7秒前
朴实的南露完成签到,获得积分10
8秒前
zhengxc完成签到,获得积分10
8秒前
樱桃发布了新的文献求助10
9秒前
9秒前
9秒前
华仔应助幸福的羿采纳,获得10
10秒前
Guo发布了新的文献求助10
10秒前
jjjdcjcj完成签到,获得积分10
10秒前
KY发布了新的文献求助10
11秒前
所所应助高天雨采纳,获得10
11秒前
所所应助企福采纳,获得10
11秒前
fengjingjing发布了新的文献求助10
12秒前
12秒前
叶子完成签到,获得积分10
12秒前
13秒前
smottom应助biubiuu采纳,获得10
13秒前
14秒前
zzz完成签到,获得积分10
15秒前
倩Q发布了新的文献求助10
15秒前
樱桃完成签到,获得积分10
16秒前
xiang发布了新的文献求助10
16秒前
NexusExplorer应助原野采纳,获得10
18秒前
19秒前
池林完成签到,获得积分10
19秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785240
求助须知:如何正确求助?哪些是违规求助? 5686798
关于积分的说明 15467120
捐赠科研通 4914318
什么是DOI,文献DOI怎么找? 2645181
邀请新用户注册赠送积分活动 1592988
关于科研通互助平台的介绍 1547323