Trialling a Large Language Model (ChatGPT) in General Practice With the Applied Knowledge Test: Observational Study Demonstrating Opportunities and Limitations in Primary Care

优势和劣势 考试(生物学) 一致性(知识库) 观察研究 生成语法 主题(文档) 答疑 心理学 计算机科学 人工智能 万维网 社会心理学 数学 统计 古生物学 生物
作者
Arun James Thirunavukarasu,Refaat Hassan,Shathar Mahmood,Rohan Sanghera,Kara Barzangi,Mohanned El Mukashfi,Sachin Shah
出处
期刊:JMIR medical education [JMIR Publications Inc.]
卷期号:9: e46599-e46599 被引量:109
标识
DOI:10.2196/46599
摘要

Large language models exhibiting human-level performance in specialized tasks are emerging; examples include Generative Pretrained Transformer 3.5, which underlies the processing of ChatGPT. Rigorous trials are required to understand the capabilities of emerging technology, so that innovation can be directed to benefit patients and practitioners.Here, we evaluated the strengths and weaknesses of ChatGPT in primary care using the Membership of the Royal College of General Practitioners Applied Knowledge Test (AKT) as a medium.AKT questions were sourced from a web-based question bank and 2 AKT practice papers. In total, 674 unique AKT questions were inputted to ChatGPT, with the model's answers recorded and compared to correct answers provided by the Royal College of General Practitioners. Each question was inputted twice in separate ChatGPT sessions, with answers on repeated trials compared to gauge consistency. Subject difficulty was gauged by referring to examiners' reports from 2018 to 2022. Novel explanations from ChatGPT-defined as information provided that was not inputted within the question or multiple answer choices-were recorded. Performance was analyzed with respect to subject, difficulty, question source, and novel model outputs to explore ChatGPT's strengths and weaknesses.Average overall performance of ChatGPT was 60.17%, which is below the mean passing mark in the last 2 years (70.42%). Accuracy differed between sources (P=.04 and .06). ChatGPT's performance varied with subject category (P=.02 and .02), but variation did not correlate with difficulty (Spearman ρ=-0.241 and -0.238; P=.19 and .20). The proclivity of ChatGPT to provide novel explanations did not affect accuracy (P>.99 and .23).Large language models are approaching human expert-level performance, although further development is required to match the performance of qualified primary care physicians in the AKT. Validated high-performance models may serve as assistants or autonomous clinical tools to ameliorate the general practice workforce crisis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shinysparrow应助哈士轩采纳,获得100
1秒前
w1b驳回了传奇3应助
1秒前
小凤发布了新的文献求助10
4秒前
scott910806发布了新的文献求助10
4秒前
nsk发布了新的文献求助10
5秒前
5秒前
Twilight完成签到,获得积分10
5秒前
6秒前
希望天下0贩的0应助kkkkkk采纳,获得10
7秒前
Jason完成签到,获得积分10
7秒前
英俊的铭应助gean采纳,获得10
9秒前
Chenqzl发布了新的文献求助10
10秒前
sunyafei完成签到,获得积分10
11秒前
11秒前
不配.应助wiwi采纳,获得10
12秒前
AMG先生发布了新的文献求助10
13秒前
鱼鱼玉玉米完成签到,获得积分10
13秒前
14秒前
鱼香肉丝发布了新的文献求助10
16秒前
很酷的妞子完成签到 ,获得积分10
16秒前
qq完成签到 ,获得积分10
16秒前
17秒前
18秒前
1234567发布了新的文献求助10
18秒前
卿願完成签到,获得积分10
18秒前
cxr发布了新的文献求助10
20秒前
英俊的铭应助nsk采纳,获得10
21秒前
gean完成签到,获得积分10
21秒前
21秒前
安详初蓝发布了新的文献求助50
22秒前
在水一方应助醋醋采纳,获得10
23秒前
小蒋完成签到,获得积分20
24秒前
华仔应助失眠的蓝采纳,获得10
28秒前
鱼香肉丝完成签到,获得积分10
28秒前
852应助Chenqzl采纳,获得10
28秒前
29秒前
小蒋发布了新的文献求助10
31秒前
31秒前
斯文的妙海完成签到 ,获得积分10
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136281
求助须知:如何正确求助?哪些是违规求助? 2787312
关于积分的说明 7780922
捐赠科研通 2443313
什么是DOI,文献DOI怎么找? 1299106
科研通“疑难数据库(出版商)”最低求助积分说明 625325
版权声明 600905