Trialling a Large Language Model (ChatGPT) in General Practice With the Applied Knowledge Test: Observational Study Demonstrating Opportunities and Limitations in Primary Care

优势和劣势 考试(生物学) 一致性(知识库) 观察研究 生成语法 主题(文档) 答疑 心理学 计算机科学 人工智能 万维网 社会心理学 数学 统计 古生物学 生物
作者
Arun James Thirunavukarasu,Refaat Hassan,Shathar Mahmood,Rohan Sanghera,Kara Barzangi,Mohanned El Mukashfi,Sachin Shah
出处
期刊:JMIR medical education [JMIR Publications]
卷期号:9: e46599-e46599 被引量:109
标识
DOI:10.2196/46599
摘要

Large language models exhibiting human-level performance in specialized tasks are emerging; examples include Generative Pretrained Transformer 3.5, which underlies the processing of ChatGPT. Rigorous trials are required to understand the capabilities of emerging technology, so that innovation can be directed to benefit patients and practitioners.Here, we evaluated the strengths and weaknesses of ChatGPT in primary care using the Membership of the Royal College of General Practitioners Applied Knowledge Test (AKT) as a medium.AKT questions were sourced from a web-based question bank and 2 AKT practice papers. In total, 674 unique AKT questions were inputted to ChatGPT, with the model's answers recorded and compared to correct answers provided by the Royal College of General Practitioners. Each question was inputted twice in separate ChatGPT sessions, with answers on repeated trials compared to gauge consistency. Subject difficulty was gauged by referring to examiners' reports from 2018 to 2022. Novel explanations from ChatGPT-defined as information provided that was not inputted within the question or multiple answer choices-were recorded. Performance was analyzed with respect to subject, difficulty, question source, and novel model outputs to explore ChatGPT's strengths and weaknesses.Average overall performance of ChatGPT was 60.17%, which is below the mean passing mark in the last 2 years (70.42%). Accuracy differed between sources (P=.04 and .06). ChatGPT's performance varied with subject category (P=.02 and .02), but variation did not correlate with difficulty (Spearman ρ=-0.241 and -0.238; P=.19 and .20). The proclivity of ChatGPT to provide novel explanations did not affect accuracy (P>.99 and .23).Large language models are approaching human expert-level performance, although further development is required to match the performance of qualified primary care physicians in the AKT. Validated high-performance models may serve as assistants or autonomous clinical tools to ameliorate the general practice workforce crisis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
in2you发布了新的文献求助10
刚刚
刚刚
guojingjing发布了新的文献求助10
1秒前
青柠发布了新的文献求助10
2秒前
3秒前
顾惊蛰发布了新的文献求助10
4秒前
加快步伐发布了新的文献求助10
6秒前
addd发布了新的文献求助10
6秒前
Allonz完成签到,获得积分10
7秒前
8秒前
margine完成签到,获得积分10
8秒前
Pie发布了新的文献求助10
8秒前
UGK发布了新的文献求助30
13秒前
yangzai发布了新的文献求助10
14秒前
17秒前
yy完成签到,获得积分10
18秒前
18秒前
Pie完成签到,获得积分10
18秒前
天天快乐应助Hengjian_Pu采纳,获得10
19秒前
20秒前
许珩发布了新的文献求助10
22秒前
丘比特应助别偷我增肌粉采纳,获得10
23秒前
24秒前
25秒前
orixero应助flysky120采纳,获得10
26秒前
26秒前
guojingjing发布了新的文献求助10
27秒前
UGK完成签到,获得积分20
27秒前
明亮的涵山完成签到,获得积分10
27秒前
酷波er应助雪雪儿采纳,获得10
28秒前
28秒前
28秒前
addd驳回了打打应助
28秒前
悲凉的妙松完成签到,获得积分20
29秒前
杭飞莲发布了新的文献求助10
30秒前
留白完成签到 ,获得积分10
31秒前
猫猫完成签到,获得积分10
31秒前
顾矜应助明亮的涵山采纳,获得10
32秒前
Hengjian_Pu发布了新的文献求助10
32秒前
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952555
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089696
捐赠科研通 3228463
什么是DOI,文献DOI怎么找? 1784978
邀请新用户注册赠送积分活动 869059
科研通“疑难数据库(出版商)”最低求助积分说明 801309